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Issues in GNSS error analysis

* What are the sources of the errors ?
* How much of the error can we remove by better modeling ?

* Do we have enough information to infer the uncertainties from the
data ?

* What mathematical tools can we use to represent the errors and
uncertainties ?



Determining the uncertainties of GNSS
parameter estimates

* Rigorous estimate of uncertainties requires full knowledge of the
error spectrum, both temporal and spatial correlations (never
possible)

 Sufficient approximations are often available by examining time
series (phase and/or position) and reweighting data

* Whatever the assumed error model and tools used to implement it,
external validation is important



Tools for error analysis in GAMIT/GLOBK

GAMIT

* “AUTCLN reweight = Y” (default in sestbl.) uses phase rms from postfit edit to reweight data with constant +
elevation-dependent terms

GLOBK
* Rename (eq_file) to “_XPS” or “_XCL” to remove outliers

* “sig_neu” adds white noise by station and span
* Best way to “rescale” the random noise component
* Alarge value can also substitute for “_XPS”/“ XCL” renames for removing outliers

* “mar_neu” adds random-walk noise
* Principal method for controlling velocity uncertainties

* In the gdl-files, rescale variances of an entire h-file
* Useful when combining solutions from with different sampling rates or from different programs (Bernese, GIPSY)

Utilities
* tsview and tsfit can generate “_XPS” commands graphically or automatically
* grw and vrw can generate “sig_neu” commands with a few key strokes

* FOGMEX (“realistic sigma”) algorithm implemented in tsview (MATLAB) and tsfit/ensum
* sh gen_ stats generates “mar_neu” commands for globk based on the noise estimates

* sh plotvel (GMT) allows setting of confidence level of error ellipses
* sh tshistand sh_velhist (GMT) can be used to generate histograms of time series and velocities



Sources of error

* Signal propagation effects
* Receiver noise
* lonospheric effects
* Signal scattering (antenna phase center / multipath)
* Atmospheric delay (mainly water vapor)

 Unmodeled motions of the station
* Monument instability
» Loading of the crust by atmosphere, oceans, and surface water

* Unmodeled motions of the satellites



2018/02/28

_0.101

0
a2

5 0.00

—

9-0.05-

Characterizing phase noise

Elevation(dagreas)
oS L8R ESE8EG853H

Epochs

0.20 1

0.15 1

0.05 4

0.10 -
0.15 1

0.20 +

| LS A B B A BN BAA I M B BB AL A

N
o

o
3
3

F3R | RO B3R R | "

N
o

Y"'v'

Hours
Elevation angle and phase residuals for single satellite

Time series and error analysis



20

s
o

LC Phase Residual (mm)
3 o

-20

2018/02/28

Characterizing phase noise

JPLM RMS=3.3mm error model a*2+b"2/(sin(elev))*2 a=1.8mm b=1.3mm
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Time series characteristics
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Time series components
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Time series components
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Theoretical analysis of a continuous time series
by Blewitt and Lavallee (2002,2003)

Top: Bias in velocity from a 1mm sinusoidal
signal in-phase and with a 90-degree lag with
respect to the start of the data span

Bottom: Maximum and rms velocity bias over
all phase angles
* The minimum bias is NOT obtained with
continuous data spanning an even
number of years
* The bias becomes small after 3.5 years of
observation
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BURN North Offset 4762193.218 m

rate(mm/yr)= 1.39+ 0.04 nrms= 0.69 wrms= 1.5 mm# 1578
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Summary of spectral analysis approach

* Power law: slope of line fit to spectrum
* 0= white noise
* -1 =flicker noise
e -2 =random walk

* Non-integer spectral index (e.g. “fraction white noise” 2 1 >k>-1)
* Good discussion in Williams (2003)

* Problems:
e Computationally intensive
* No model captures reliably the lowest-frequency part of the spectrum



“White” noise

* Time-independent (uncorrelated)

* Magnitude has continuous probability function, e.g.
Gaussian distribution

* Direction is uniformly random
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) “True” displacement per time step
— Independent (“white”) noise error
=) Observed displacement after time step t (v = d/t)
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“Color” noise

* Time-dependent (correlated): power-law, first-order Gauss-
Markov, etc.

* Convergence to “true” velocity is slower than with white
noise, i.e. velocity uncertainty is larger
o>

Must be taken into account to
produce more “realistic” velocities

This is statistical and still does not
account for all other (unmodeled)
errors elsewhere in the GPS system

7 el “True” displacement per time step
— Correlated (“colored”) noise error*

=) Observed displacement after time step t (v = d/t)

* example is “random walk” (time-integrated white noise)
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CATS (Williams, 2008)

e Create and Analyze Time Series

* Maximum likelihood estimator for chosen model solves for
* Initial position and velocity
» Seasonal cycles (sum of periodic terms) [optional]
* Exponent of power law noise model

* Requires some linear algebra libraries (BLAS and LAPACK) to be
installed on computer (common nowadays, but check!)

* Information on M. Floyd’s experience of compiling CATS at
http://web.mit.edu/mfloyd/www/computing/cats/
* Formerly at http://www.pol.ac.uk/home/staff/?user=WillSimoCats
* However, above web page and source code no longer seem to available
* Possibly a sign that CATS is superseded by Hector?



Hector (Bos et al., 2013)

* Much the same as CATS but faster algorithm

* Maximum likelihood estimator for chosen model solves for
* Initial position and velocity
» Seasonal cycles (sum of periodic terms) [optional]
* Exponent of power law noise model
Also, as of Hector version 1.6:
* Changes in linear velocity
* Non-linear motions (logarithmic and/or exponential decays)

* Requires ATLAS linear algebra libraries to be installed on computer

* Linux package available but tricky to install from source due to ATLAS
requirement

* http://segal.ubi.pt/hector/



sh cats/sh hector

* Scripts to aid batch processing of time series with CATS or Hector
* Requires CATS and/or Hector to be pre-installed

* Outputs
* Velocities in “vel”-file format
E(iuivalent random walk magnitudes in “mar_neu” commands for sourcing in
globk command file
* Can take a long time!

* Reads GAMIT/GLOBK formats
» pos-file(s) as input
» eq-file(s) to define discontinuities for estimation of offsets

”n «u n u

* tsfit command file containing “eq_file”, “max_sigma”, “n_sigma” and/or
“periodic” options instead of specifying as sh cats/sh hector options

e Writes files for GLOBK

* apr-file(s), including “EXTENDED” terms where periodic and/or non-linear
(logrithmic and/or exponential decay) terms have been estimated

* “mar_neu” commands for equivalent random walk process noise

|II



Approximations (Mao et al., 1999)

Use white noise statistics (wrms) to predict the flicker noise
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“Realistic sigma” algorithm for velocity
uncertainties

Motivation

* Computational efficiency

* Handle time series with varying lengths and data gaps
* Obtain a model that can be used in globk

Concept

* The departure from a white-noise (Vn) reduction in noise with averaging
provides a measure of correlated noise.

Implementation

* Fit the values of x* versus averaging time to the exponential function
expected for a first-order Gauss-Markov (FOGM) process (amplitude,
correlation time)

* Use the x? value for infinite averaging time predicted from this model to
scale the white noise sigma estimates from the original (least-squares) fit

and/or

* Fit the values to a FOGM with infinite averaging time (i.e., random walk) and
use these estimates as input to globk (“mar_neu” command)



Extrapolated variance (FOGMEXx)

* For independent noise,
variance « 1/VN ..

* For temporally correlated noise,

variance (or y?/d.o.f.) of data

increases with increasing window

size

* Extrapolation to “infinite time” can
be achieved by fitting an asymptotic
function to RMS as a function of

time window
e ¥?/d.o.f. x e"

* Asymptotic value is good estimate

of long-term variance factor

* Use “real_sigma” optionin tsfit

Chi° of Residuals
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Understanding the FOGMEXx algorithm: Effect of averaging on time-series noise

WRMS: 0.70 mm NRMS: 0.40 # 1826 data Rate:

23.81+ 0.01 mmiyr
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Same site, East component ( daily wrms 0.9 mm nrms0.5)

ata CVHS_CHT East
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Position (mm)

Position (mm)

Position (mm)

Using TSVIEW to compute and display the “realistic-sigma” results

0.45 mm NRMS_ 2.5
.22 # 1826 data Rate: 23.81+ 0.09 mmiyr = Data CVHS_CHT North
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Comparison of estimated velocity uncertainties using spectral
analysis (CATS) and Gauss-Markov fitting of averages (FOGMEX)
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East Component
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Summary of practical approaches

* White noise + flicker noise (+ random walk) to model the spectrum
(Williams et al., 2004)

* White noise as a proxy for flicker noise (Mao et al., 1999)

* Random walk to model to model an exponential spectrum (Herring
“FOGMEX” algorithm for velocities)

III

» “Eyeball” white noise + random walk for non-continuous data

* All approaches require common sense and verification



External validation of velocity uncertainties
by comparing with a geophysical model

Simple case: assume no strain within a geologically rigid region

42.5°
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If geologically rigid model is valid, 70% of sites should show no
statistically significant motion, i.e. velocity lies within error ellipse
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External validation of velocity uncertainties
by comparing with a geophysical model

42.5°

Same solution

plotted with 415"
95% confidence

ellipses

40.5° A
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Now 1-2 of
17 velocities
pierce error
ellipses
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External validation of velocity uncertainties
by comparing with a geophysical model

A more complex case of a large network in the Cascadia subduction zone

Colors show slipping and locked
portions of the subducting slab
where the surface velocities are
highly sensitive to the model;
area to the east is slowly
deforming and insensitive to the
details of the model

240E T
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Velocities and
70% error
ellipses for 300
sites observed by
continuous and
survey-mode
GPS 1991-2004

Validation area
(next slide) is east
of 238°E
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Residuals to elastic block
model for 73 sites in
slowly deforming region

Error ellipses are for 70%
confidence:

13-17 velocities pierce
their ellipse
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normalized velocity residuals for
eastern Oregon and Washington
L 80 e 70 sites
* Noise added to position for each
4 survey:
* 0.5 mm random (“sig_neu”)
* 1.0 mm/sqgrt(yr) random walk
- 40 (“mar_neu”
* Solid line is theoretical for a x-
L 20 distribution
0
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Statistics of velocity residuals

00 05 10 165 20 25 30

e Same as last slide but with a

L i smaller random-walk noise
added:
80 A L 80 * 0.5 mm random
* 0.5 mm/yr random walk
(@) ‘
& |  cf. 1.0 mm/sqrt(yr) RW for “best”
E B | i noise model
2 * Note greater number of
C ‘ o .
g 40 - / - 40 residuals in range of 1.5-2.0
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/
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Ratio (velocity magnitude/uncertainty)
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480 larger random and random-walk
noise added :
T L g0 e 2.0 mm white noise
" 1.5 mm/sqrt(yr)) random walk
I  c¢f. 0.5 mm WN and 1.0
i 3 B9 mm/sqrt(yr) RW for “best” noise
},’ model
:'{ L 40 * Note smaller number of
V] residuals in all ranges above 0.1-
sigma
{ - 20
l
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Summary

* All algorithms for computing estimates of standard deviations have
various problems

* Fundamentally, rate standard deviations are dependent on low frequency
part of noise spectrum, which is poorly determined without very long time
series (decades)

* Assumptions of stationarity (constant noise characteristics over time)
are often (usually?) not valid

 FOGMEX (“realistic sigma”) algorithm is a convenient and reliable
approach to getting velocity uncertainties in globk
* We are testing how reliable, in comparison to other methods, given good and
bad time series

* Velocity residuals from a physical model, together with their
uncertainties, can be used to validate the error model



