Global Kalman filter VLBI and GPS analysis program

Version 10.0
Monday, March 25, 2002
Table of Contents

1. Introduction .. 1
 1.1 Description and applications of the software ... 1
 1.2 Overview of globk processing ... 2
 1.3 Recent changes in the software .. 4
2. Preparing the Input Files ... 10
 2.1 htoglb .. 10
3. Running glred, globk, and glorg .. 19
 3.1 globk command file ... 22
 3.2 glorg command file ... 39
 3.3 Defining a reference frame for the analysis ... 44
 Station constraints .. 44
 Orbital constraints .. 46
 Earth orientation constraints ... 46
 3.4 Examples for GPS analysis ... 48
 Testing coordinate repeatabilities .. 48
 Estimating repeatabilities and velocities from several surveys 51
 Use of stochastic noise for stations and orbits ... 52
 3.5 Examples of globk and glorg output ... 55
 3.6 Error messages ... 68
 globk/glred error messages .. 68
 glorg error messages .. 70
4. GMT Plotting Utilities ... 71
5. Auxilliary Programs ... 76
 5.1 glist .. 76
 5.2 glsave .. 77
 5.3 blsum, bcsum, ensum .. 77
 5.4 extract, exbrk .. 79
 5.5 getrel .. 82
 5.6 swaph, hfupd, htoh .. 82
 5.7 glbtog .. 85
 5.8 glbtosnx .. 86
 5.9 corcom ... 87
 5.10 plate ... 87
1. INTRODUCTION

1.1 Description and applications of the software

Globk is a Kalman filter whose primary purpose is to combine solutions from the processing of primary data from space-geodetic or terrestrial observations. It accepts as data, or "quasi-observations" the estimates and associated covariance matrices for station coordinates, earth-rotation parameters, orbital parameters, and source positions generated from analyses of the primary observations. These primary solutions should be performed with loose a priori uncertainties assigned to the global parameters, so that constraints can be applied uniformly in the combined solution. Although globk has been developed as an interface with GAMIT (for GPS) and CALC/SOLVE (for VLBI), there is little intrinsic to this pairing in its structure. We have used globk successfully to combine solution files generated by other GPS software (e.g. Bernese and GIPSY), as well as for terrestrial and SLR observations.

There are three common modes, or applications, in which globk is used:

(1) Combination of individual sessions (e.g., days) of observations to obtain an estimate of station coordinates averaged over a multi-day experiment. For GPS analyses, orbital parameters can be treated as stochastic, allowing either short- or long-arc solutions.

(2) Combination of experiment-averaged (from (1)) estimates of station coordinates obtained from several years of observations to estimate station velocities.

(3) Combination of individual sessions or experiments with station coordinates treated as stochastic, thus generating coordinate repeatabilities for assessment of measurement precision over days (session combination) or years (experiment combination).

Some things globk cannot do.

(1) Globk assumes a linear model. Therefore any large adjustments to either station positions or orbital parameters (>10 m for stations and >100 m for satellite orbits) need to be iterated through the primary processing software to produce new quasi-observations.

(2) Globk cannot correct deficiencies in the primary (phase) analysis due to missed cycle slips, "bad" data, and atmospheric delay modeling errors. You cannot eliminate the effect of a particular satellite or station at the globk stage of processing, though globk can be useful in isolating a session which is not consistent with the ensemble and in some cases the effect of a station on the globk solution can be reduced.

(3) Globk cannot resolve phase ambiguities: the primary GPS solution must be strong enough on its own to accomplish this. The need to combine sessions for ambiguity resolution is the one reason you might want to perform a multi-session solution with primary observations.

The combination of quasi-observations to estimate station positions and velocities is described most completely in Dong, Herring, and King, Estimating regional deformation from a combination of space and terrestrial geodetic data, J. Geodesy, 72, 200–214, 1998. The basic algorithms and a description of Kalman filtering are given in Herring, Davis, and Shapiro, Geodesy by Radio Interferometry: The Application of Kalman filtering to the analysis of very long baseline interferometry data, J. Geophys. Res, 95, 12561–12581, 1990. Application to the analysis of GPS data is discussed in the Appendix of Feigl et

We use the name "globk" to refer loosely to the ensemble of programs collected in the /kf ("Kalman filter") directory of our software distribution. The most important of these are *htoglb*, which converts the solution files from analysis of primary observations into binary *h*-files used by the *kf* software; *globk* and its near twin *glred*, which use these *h*-files as input to a Kalman filter to produce a combined solution; and *glorg*, which applies generalized constraints to the combined solution. *Glred* differs from *globk* only in treating the *h*-files from each day independently, providing a method for generating coordinate repeatabilities which is more efficient than a rigorous Kalman back solution performed by *globk*. Also included in the /kf suite are programs to plot coordinate or baseline repeatabilities, compare estimates of coordinates or velocities from different solutions, and relate velocities to plate rotations.

In the next section we describe briefly the steps involved in obtaining a time series and/or velocities from quasi-observations using *htoglb*, *glred*, *globk*, and *glorg*. We then summarize for experienced users recent changes in the software. Chapter 2 gives details of file preparation using *htoglb*. Chapter 3 describes in depth the *globk/glred* and *glorg* commands and gives example command files for common applications. Chapter 4 describes the shell scripts and programs used to plot the time series, and Chapter 5 most of the auxiliary programs that might be useful in your analysis.

Much of the documentation contained here is available on-line and will be displayed automatically when you type the name of the program with no arguments. To obtain help files in this way you need to set (e.g., in .login or .cshrc) an environment variable:

```
% setenv HELP_DIR /mydir/help
```

Where *mydir* is the directory on your system containing *com*, *libraries*, *kf*, *gamt*, and *help*. Omission of this command will cause an error message of the form

```
IOSTAT error 118 occurred opening <program name.hlp> when you attempt to invoke the help. If you intend to create SINEX files for distribution outside of your institution, you should also set a second environment variable

% setenv INSTITUTE my-lab
```

where *my-lab* is the name, up to 4 characters, of your institution.

1.2 Overview of globk processing

At the start of processing the analyst has available an ensemble of quasi-observation (*h*- or SINEX) files from prior processing of primary data from GPS, VLBI, SLR, or terrestrial observations. The first step is to convert the ASCII quasi-observation files into binary *h*-files that can be read by *globk*. This is accomplished via the program *htoglb*, described in Chapter 2. As a by-product of this conversion, you can obtain in the appropriate format a file of coordinates for stations in your network. This "*apr*" file can be used along with a similar file of coordinates and velocities for global reference stations (e.g., *itrf96.apr*, available in pub/gps/updates/sites in the bowie.mit.edu ftp directory or web page) to define a reference frame for your analysis.

For GPS processing (the main emphasis of this manual), the second step is usually to run *glred* for all of the (binary) *h*-files from a survey or period of continuous observations to
obtain a time series of station coordinates, which can then be plotted and examined for outliers and the appropriate scaling to obtain reasonable uncertainties. When outliers are found, you may need to repeat your processing of the primary observations (e.g., using GAMIT) for certain days or to remove the h-files from these days from further analysis. Once you have obtained a clean data set, you repeat the processing, this time with globk instead of glred, to combine the daily h-files into a single h-file that represents your estimate of station positions for the survey. The globk estimates themselves are usually produced with loose constraints, but as part of this run (or separately) you can run glorg to define a reference frame by applying constraints on the coordinates of a selected group of stations.

Once you have estimates (h-files) of station coordinates for several surveys spanning a year or more, you can run glred and globk again, using these combined ("survey") h-files as input to obtain a time series (from glred) and/or estimates of station velocities (from globk) for the entire period spanned by your data. As with the daily combinations, the globk estimates are usually obtained with loose constraints, and glorg is run to impose reference frame constraints.

Globk does not require any particular directory structure, but one that we have found to work well is to create a globk directory at the same level as the day directories for your GPS data, and under globk create the following sub-directories:

- glbf for the binary h-files;
- soln for running solutions, and containing the command files, lists of binary h-files, and experiment list files, and globk output files;
- tables for files of a priori station coordinates and satellite Markov parameters.

Parallel or reprocessing of the same data can be accommodated by adding additional solution directories, e.g., fsoln, gsoln,... If you are processing a series of campaigns then you may want to put this structure at the level of the campaign directories.
1.3 Recent changes in the software

New features in version 5.0

New features and parameters added to globk since the last release (4.1) have included the ability to provide an a priori model of station motion which includes non-secular terms to account for post-seismic relaxation and seasonal effects, the ability to output from glorg a constrained h-file that can be converted to SINEX for analysis by other programs, and several features addressing specialized problems in global processing and combination of SINEX files from IGS Analysis Centers. These global features include the ability to add pole tide corrections when they have not been included in earlier (e.g., GAMIT) processing; the ability to estimate pole and UT1 parameters for each day of a multiday solution, and new parameters for SV antenna offsets, the Berne 1997 radiation pressure model, and global rotation parameters separate from UT1 and pole parameters.

Version 5.04 (2000/09/01) includes a new command to add noise to the coordinate components of individual stations using random rather than Markov process (see "Station coordinates and velocities" in Section 3.1). Another new feature is that renaming a station to end in _XCL will cause globk to automatically exclude it from the solution, avoiding the need to mention it specifically in the use_site list (see "Defining earthquakes and renaming stations" in Section 3.1). Note that the com_file (and sol_file) from this version of globk are not backward compatible. If you want to read old com_files, you should save copies of glsave and glorg.

Not

Version 5.04 (2000/04/04) allows glorg to output a constrained h-file. This feature is invoked when glorg command file includes the out_sol command and the globk command file includes the out_glb command. In this case, globk will write the h-file with the constraints applied in globk (usually loose if glorg is invoked), using the name supplied by out_glb, and will also write a constrained h-file from the glorg solution, using the out_glb name with .CON appended.

Version 5.03 (991110) allows the use of exponential, logarithmic, and periodic terms in specifying the a priori motion of a station. These terms are implemented via additional lines in the apr_file, described in Section 2.2.

Also in version 5.03 globk requires that the gamit leap.sec file be read if polar motion or UT1 values are changed. If this file is not found in the local directory, it is searched for $HOME/gs/tables. A warning message is now printed if the leap.sec can not be found. In some cases, not finding the leap.sec file can cause large rotations to be introduced in the solution.

Also in version 5.03 glorg allows a constraint sigma to be used with the FORCE command.

Version 5.02 (990226) corrected a bug in the pole-tide code and also bugs associated with multiday polar motion, generating IERS table entries, and the integrated random walk model used in globk. The old integrated random walk formulation couples position and rate estimates too strongly and was originally introduced to allow direct integration of rates to get position (primarily for polar motion). The new model is more statistically correct but still seems not to be complete. The IRW model used with multi-day polar motion/UT1 estimates seems to be correct. If you wish to invoke the old formulation of the integrated random walk, you can use the OLD option of the irw_mod command.
Version 5.01 (981215) allows corrections to input h-files for the pole tide using the command `app_ptid` (see under Correcting models in Section 3.1). If the h-file was created by GAMIT, `globk` will detect whether the pole tide was applied in phase processing and will not apply it a second time.

In version 5.00 (981020) we added a command (`mul_pmu`) to allow estimation of pole and UT1 parameters and their rates at each day of a multiday solution. In this implementation the rates are integrated directly to get orientation angles (pole and UT1), with a random walk process specified for the rates and an integrated random walk for the angles. In the initial implementation of the integrated random walk (IRW), there was an error that is corrected in version 5.02. In 5.01 (981215) rotations and rotation rates may also be estimated independently of polar motion and UT1 using the `apr_rot` and `mar_rot` commands. Separate estimation should not normally be needed but can be used as a last resort when the rotation inconsistencies between h-files cannot be removed with the `in_pmu` command, as may be the case with SINEX or h-files that do not have EOP values in them. See Earth rotation parameters in Section 3.1 for the details of these commands.

From version 5.00 satellite antenna offsets and three more radiation pressure parameters (for the 1997 Berne model added to GAMIT) may be estimated using the `apr_svan` and `mar_svan` commands. The addition of these parameters, bring the total number of orbital parameters to 23, motivating a shorter syntax for specifying their a priori constraints in the `apr_svs` and `mar_svs` commands (see under Satellite orbital parameters in Section 3.1). Satellite parameters can now be equated in `glorg`, a feature useful for the antenna phase-center offsets, e.g.

```
equate prn_01 zoff prn_02 zoff
```

The `glorg use_site` command is now `stab_site` to more accurately reflect its meaning and to distinguish it from the `globk use_site` command (`use_site` in `glorg` will still be recognized, for backward compatibility).

Finally, with 5.00 it is possible to add comments to the end of any command line using the `!` or `#` character.

New features in version 4.1

In Version 4.17 (980518) of `globk` (4.04 of `glorg`) a new feature was added to direct commands to be read from another file, allowing, for example, a common set of `use_site`, `equate`, or `rename` commands to be shared by multiple `globk` or `glorg` command files. To invoke this feature use

```
source < file name >
```

where `< file name >` gives the full path of the file containing the secondary commands. The source command can be issued multiple times from within the primary command file but cannot be used in the secondary command file.

The use of rename and earthquake entries are now tracked and only those that are actually used in the solution are output to the `prt` and `org` files. (The numbering of entries reflects their absolute number in the list given by the user.

A new command `rad_reset` allows the user to specify that the radiation parameters should not be reset when a new IC epoch is encountered. The default (compatible with pre-4.17 versions of `globk`) is to reset the radiation parameters when a new IC epoch is
encountered. To prevent a reset, use \texttt{rad_reset No} You can allow variations within this time using Markov process noise (\texttt{mar_svs} command). When the \texttt{rad_reset} command is used, you should normally specify the \texttt{Z} option in the \texttt{make_svs} command, forcing the direct radiation-pressure parameter to 1.0 and the other radiation parameters to 0.0; if this is not done, \texttt{globk} will estimate the average difference from the values in the input h-files (which themselves will in general be different from day-to-day).

Also in 4.17 we have added an argument to the gdl files to allow the diagonal of input covariance matrices to be scaled separately from the overall matrix. This feature is often useful for stabilizing SINEX files which have become unstable in the process of removing constraints applied in the original solution. The form of the gdl file is now

\[
\text{[glb file name]} \quad <\text{scale}> \quad <\text{diagonal scale}> \quad <+>
\]

where \texttt{[glb file name]} is the binary h-file name (with lines starting with * or # ignored), \texttt{<scale>} is an optional scale for the whole covariance matrix, \texttt{<diagonal scale>} an optional scale for the diagonal in parts-per-million (ppm) to be added to 1.0, and \texttt{<+>} is an optional argument for GLRED which will cause the next binary h-file to be combined with this one (and so on until a line is encountered without a + at the end of the line. The scale factors no longer need be given for the + sign to be interpreted by GLRED. A typical gdl file line may now look like \texttt{h980126_stan.glx 3.2 2 +}, which would scale the covariance matrix by 3.2 and scale the diagonal by (1.0+2*1.d-6).

In \texttt{globk} 4.17 the \texttt{prt_opt} output option (\texttt{GDLF}) added in 4.13 was expanded to provide not only the list of input h-files, but also the prefit chi**2/f values written to the log and status files for the forward and backward runs. If a back solution is not run, or an experiment was not used in the back solution because it was rejected in the forward run, its chi**2/f will be -1. The new form of the output when the \texttt{GDLF} option is specified in the \texttt{prt_opt} or \texttt{org_opt} commands now looks like

\begin{verbatim}
EXPERIMENT LIST from cont.srt
Name SCALE Diag PPM Forw Chi2 Back Chi2 Status
1 /users/tah/SIO_GLX/H98/H980419_SIO.GLX 1.000 .000 1.134 .809 USED
2 /users/tah/SIO_GLX/H98/H980420_SIO.GLX 1.000 .000 2.113 2.104 USED
3 /users/tah/SIO_GLX/H98/H980421_SIO.GLX 1.000 .000 .717 2.338 USED
4 /users/tah/SIO_GLX/H98/H980422_SIO.GLX 1.000 .000 3.421 1.471 USED
5 /users/tah/SIO_GLX/H98/H980423_SIO.GLX 4.000 .000 2.083 1.307 USED
6 /users/tah/SIO_GLX/H98/H980424_SIO.GLX 2.000 3.000 .693 .245 USED
7 /users/tah/SIO_GLX/H98/H980425_SIO.GLX 1.000 .000 2.433 .008 USED
\end{verbatim}

\texttt{SCALE} is the variance factor specified in the .gdl list and applied to the covariance matrix of the h-file. \texttt{Diag PPM} is the diagonal scaling in parts-per-million difference from 1.0. \texttt{Fowr Chii2} and \texttt{Back Chii2} are the chi**2/degree-of-freedom for the forward and backward solutions, respectively. \texttt{Status} indicates whether or not the file was used in the solution.

An important refinement of reference frame stabilization was introduced in \texttt{glorg} 4.04 (980419). An iterative scheme is now used which considers both the uncertainties and deviations of the coordinates or velocities (estimated separately) in deciding the weight and inclusion of each station. The effect of the new algorithm is to provide more automatically a robust definition of the reference frame under a variety of circumstances. See the new commands \texttt{stab_ite} and \texttt{stab_min} and the changes to the defaults for \texttt{cnd_hgtv} in Section 3.1 for a complete description of the controls for this feature.
Also in glorg 4.04 the equate now uses neu rather than xyz as the default. The local_equate command is unnecessary to specify neu but can be used with an optional argument N ('no') to invoke xyz.

In globk 4.16 (980216) and glorg we fixed two long-standing bugs. In xyz_to_geod.f, the rotation matrix between xyz and neu coordinates was computed with a slight error. The error had negligible effect on the computed values of local coordinates, but it could cause some correlation between the north and up coordinate when height sigmas are large. The second bug was in obtaining the pivot element during matrix inversions. This bug seems to have had no effect on the results but might have affected numerical stability.

A new feature in globk 4.15 (971112) allows a rename within the specified epochs to be restricted to h-files with a specified string in their file names. Thus corrections to station heights, for example, can be applied to one but not all h-files from a given day. See rename (below) for the format.

In globk 4.14 (970909) and also glorg two new output features are available for the prt_opt command (or command-line argument for glorg):

```
   eras  Erases existing prt or org files with the same name before printing, thus
          it will cause the accumulated output for previous days to be erased,
          leaving only the last day in the file.

   nopr  Prevents the writing of the prt, crt, or org files; useful in quick tests in
          which you're only interested in the log file.
```

In glorg 4.02 (970514) the cnd_hgtv command was modified to accept two additional arguments to set limits on the sigmas of the height and height rates to be used in origin constraints. They are meant to exclude stations with large uncertainties and are specified in terms of height s because the indeterminate reference frame in the loose solution will cause the uncertainties of the horizontal coordinates to be artificially large.

In 4.13 (970607) we added a new arguments to the max_chii command of globk to trap h-files in which the network has large rotations (see the command description in Section 3.1), and two new arguments to the cnd_hgtv command of glorg to exclude weak stations from the origin definition (see Section 3.2). Finally, we changed some of the internal book-keeping in globk to record better the start and end times of the h-files used in the solutions.

In globk 4.12 (961127) we have added two new commands to help limit the stations that are included in a globk analysis. Use_pos restricts the stations used to a geographical area and use_num excludes stations appearing in a small number of h-files. We have also cleaned up the code that keeps track of the stations actually used in an analysis so that only stations with data appear in the final solution (but if a station is deleted during the run due to bad prefits, it will still appear in the output—see the max_chii command below). New parameters—apr_tran and mar_tran—have been introduced to allow for translation rates of change, and scale changes. The new commands replace the amr_tran command though the latter can still be used.

The other major change in 4.12 allows the direct copying of the initial covariance matrix from the globk input files when a loose solution is run and there are no additional computed parameters (such as earth rotation or translation parameters). A "loose" solution is defined by all apriori variances being greater than 100 (i.e. 10 meters for
positions and 10 m/yr for velocities). If a direct copy is not desirable—for example when a large rotation is to be removed—then you can turn off the option with the command no_dircp (with no options). There is a small impact on the chi-square computation when a direct copy is made because the parameters in the direct copy matrix are included in the sum of the number of degrees of freedom in the solution.

A new feature has been added with 4.12 that allows glorg to be run directly from within globk. The feature is invoked using the org_cmd command to specify the name of the glorg command file, org_opt to specify the options, and org_out to specify the output file.

A new command—max_chii—was introduced in 4.11 and extended in 4.12 to automatically exclude "bad" h-files from a solution. The command has two arguments, to specify the maximum chi-square increment (default 1000.) and the maximum prefit residual (default 10,000.) The same code change excludes an h-file if the chi-square increment is negative (usually a result of numerical instabilities, to be prevented by a tightening the apriori constraints and reducing the magnitudes of process noise on the stochastic parameters). Also more detailed diagnostic information is now output to the log file if a negative chi-square increment occurs.

Finally, with 4.12, when the descript command is used, the description string is now written at the top of the print and glorg files.

In glorg 4.01 (961127) a new command cond_sig allows finite uncertainties to be assigned to translation, rotation, and scale parameters in the pos_org and rate_org commands. The command helps to minimize numerical stability problems and/or to have the estimates uncertainties in station position and velocity account for the uncertainty in realizing the reference frame.

The change to version 4.10 was simply one of increasing the maximum number of stations and parameters that could be processed.

With 4.03, essential screen messages are now written into files GLOBK.status, GLOBK.warning, or GLOBK.fatal by routine libraries/comlib/report_stat.f in order to support automatic monitoring scripts. (autcln messages are written into GAMIT.status, etc.).

In version 4.03, J2000 and B1950 h-files can be mixed but the make_svs command must be used to ensure that a single ephemeris file is generated with the B1950 and J2000 ephemerides differing by only the rotational terms between J2000 and B1950.

With this release, there is an important, but hopefully transparent change, in that globk is now a single program rather than the original from of several linked programs (i.e., globk scheduled glfor, glbak, glout glsave and glinit to run). The "segmented" version is still available in the globk directory and is called globs. The combined version, pointed to from the ktl/bin directory is saved in the globe directory. When any module of globk is remade, it is necessary to re-make in the ktl/globe directory. The effect of this change is the globk common file (given with the com_file command) is not written unless the name is given in the command file. If the com_file is not written then glorg cannot be run after globk finishes.
In version 4.01 a new command—cond_sig—has been added to the glorg command file to allow sigmas to be assigned to the translation, rotation, and scale parameters controlled by the pos_org and rate_org commands.

New features in version 4.0

With version 4.0 the binary file structure for globk changed considerably to support carrying the information needed for SINEX files. This additional information increases the size of binary h-files by about 5%. As far as known, the new file structure is both forward and backward compatible and globk version 4.0 is backward compatible with the old binary file structure.

It is no longer necessary to construct an a priori ephemeris file by running unify_svs to concatenate and edit the ephemeris files generated by htoglb. Instead you need only include the command make_svs <file name> in your globk command file. The ephemeris elements generated from the parameter values on the binary h-file will be the same as those in the g-files used in the original GAMIT runs for h-files generated by post-4.0 versions of htoglb. (For earlier files the estimated orbital elements will be used.)

Htoglb has been modified to read SINEX files.

Glred now allows automatic concatenation of binary h-files using at + sign at the ends of lines.

The print controls for glorg may be entered in string form (see the descriptions in Section 3.1 for globk, or the globk.hlp file online. The bit-mapped integer value form still works. When the string option is used in a command file, the codes are blank separated. When used in a runstring (for glorg for example), the codes should be separated by : or = signs; i.e., in a command file the usage would be prt_opt blen psum, and in a runstring, glorg test.org blen:psum:cmds glorg.cmd test.com.

Globk will now handle correctly the full set of non-gravitational force (radiation-pressure) parameters used by GAMIT release 9.4—once-per-rev parameters as well as the constant forces associated with the direct, y-, x-, z- and "b" (Berne x-) axes. The keywords used to identify these parameters and the rules for their combination are described below in the list of commands.

The information written to the print (prt) file, back (bak) file, and the screen can now be controlled by literal strings as well as a bit-mapped integer. A new print option has been introduced which allows adjustments to positions to be printed in a form similar to the velocity summary (i.e., one line per station with latitude longitude and position adjustments and sigma. The 4-character keywords are given below in the descriptions for prt_opt/crt_opt/bak_opt and also in the on-line help for glorg.
2. PREPARING THE INPUT FILES

There are three classes of input to the software: 1) Quasi-observations, or solution files, are contained in a binary h- or global file which must be created from the output of a primary processing program (GAMIT, FONDA, etc.). These are produced by program *htoglb*, described below. 2) A priori values for station coordinates, satellite initial conditions and parameters, and Earth orientation values are given in the tables whose formats are described below. 3) Each of the major programs uses a command file which specifies controls the type of solution, parameters estimated, and constraints applied. These are explained in detail in Chapter 3.

2.1 *htoglb*

This is the program which converts to *globk* binary h-files the ASCII solution files from a variety of GPS, VLBI, and SLR analysis programs. The following file types are currently supported:

(a) GAMIT h-files.
(b) Solution Independent Exchange (SINEX) files for GPS (and other space-geodetic) analyses.
(c) FONDA h-files.
(d) JPL Stacov files. Note that these files may have no ancillary information associated with them and caution should be exercised in their use. In particular, it is not possible to rotate their coordinate system using the *in_pmu* command because they do not contain enough information about the time to which their polar motion/UT1 values (if present in the estimated parameters) are referred. When these files are converted, it is assumed that quantities are referred to 12:00 hrs UTC on the day given in the first line of the file.
(e) SLR/GSFC files for station positions and velocities (e.g., SL8.6.cov files). We have no information about the stability of the formats of these files and again caution should exercised in there use.
(f) VLBI/GSFC covariance files for station positions and velocities. Again we have no information about the stability of the format of these files.

Runstring:

```
htoglb [dir] [ephemeris file] <input files ..... >
```

where [dir] is the directory for the output files,
ephemeris file is the name of the file for output of the satellite ephemerides,
and
<input files > is a list of input files with optional constraints of the form -C=<constraint> for SINEX files.

The output binary h-files are named with the time and date of the mid-point of the solution and a 4-character solution name, plus a 3-character extent that identifies the type of input solution:

```
hyymmddhhmm_XXXX.[ext]
```

For GAMIT h-files, the solution name (xxxx) is the same as input h-file; for SINEX it is first 3 characters plus the character before the last '.' in the name. GAMIT files have
Extents which depend on the type of analysis—normally \texttt{glr} for biases-free or \texttt{glx} for biases-fixed from the loosely constrained solutions. Extents for constrained solutions and for h-files produced by GAMIT releases prior to 9.2 (Mar 92) are explained below.

To replace the a priori constraints in SINEX files the \texttt{-C=<new constraint>} option may be used preceding the SINEX file name, where \texttt{<new constraint>} is the constraint in meters (only station coordinates are allowed at present). If \texttt{-C=0} is used the constraints are left unchanged. This form may be used multiple times in the runstring and stays in effect until changed; e.g.,

\begin{verbatim}
% htoglb svsinex -C=10 emr08177.snx emr08187.snx -C=0.1 cod08177.snx
\end{verbatim}

replaces the constraints in the EMR files with 10 m, and the COD file with 0.1 m. For some SINEX files there can be numerical problems if the new constraint is made too large. Note also that constraints are changed only if they are smaller in the SINEX file.

If the outputs are required in the current directory then the directory name can be given as \\
\texttt{.} or \\
\texttt{./}. The / at the end of the directory name is optional. (It will added if it is omitted.)

All of the binary files can be produced by \texttt{htoglb} in one run. If you have your directories set up as indicated in Section II, then to create binary files, for example, for days 51–59 of 1993 you could type from your \texttt{soln} directory

\begin{verbatim}
% htoglb ../glbf ../tables/svs_myexp.svs ../../../05[1-9]/h*a.9305[1-9]
\end{verbatim}

where the first argument is the output directory, the second is the file for writing out ephemeris and a priori coordinate information, and third is the input file(s). All of the Unix wild cards work for the names of the files to be input to \texttt{htoglb}. The above case would put the globk binary files in directory \texttt{../glbf}, and the ephemeris and station-coordinate information would be appended to \texttt{../tables/svs_myexp.svs}, and the 'a series h-files in directories 051,052,....,059 would be converted. If you not wish to extract ephemeris information—no longer needed by \texttt{globk} since the introduction of the \texttt{make_svs} command—and you don’t need to extract coordinates for new stations, you can substitute \texttt{/dev/null} for the file name in the second argument. To see which files will be used by \texttt{htoglb}, you can just use \texttt{'ls \textasciitilde/05[1-9]/h*a.05[1-9]'}'.

It is not critical if a non-h file is input to \texttt{htoglb}. The program can quickly detect if the file type is not correct

Since GAMIT h-files can and usually do contain multiple solutions, \texttt{globk} files are produced for each solution by changing extents. H-files produced by \texttt{solve} prior to GAMIT release 9.03 (\texttt{solve} version 9.11) will contain both the standard (GAMIT) solutions and the loosely constrained solutions. Thus, for a \texttt{solve} run which attempted ambiguity resolution, there will be 4 solutions in the \texttt{h-file}: (1) the biases-free solution with the user-specified constraints; (2) the biases-fixed solution with user constraints; (3) the biases-free solutions with very loose constraints (wanted by \texttt{globk}), and (4) the biases-fixed (to the same values as in the second solution) with loose constraints (also wanted by \texttt{globk}). With current versions of \texttt{solve} the default is to write into the h-file only the loosely constrained solutions. \texttt{Htoglb} creates a separate binary file for each solution, naming it with the date of the observations plus an extent identifying the solution (e.g. \texttt{h88110706a.glx}). Binary h-files produced by versions of \texttt{htoglb} prior to 3.1 or from \texttt{solve} versions prior to 9.21 will follow the extent sequence \texttt{.glb, .glc, .gld, .gle}, corresponding to the solutions performed by \texttt{solve} (in this scheme you must know the number and order of the solutions in order to identify the correct file). The current version of \texttt{htoglb} run on newer h-files assigns a unique name to the extent based
on the solution name assigned in \textit{solve}: gcr and gcx for the biases-free and biases-fixed solutions with the input GAMIT constraints, and glr and glx for biases-free and biases-fixed solutions with loose constraints. If the ambiguities were reliably resolved then the last binary \textit{h-files} (gle in the old scheme, glx in the new scheme) should be used in \textit{globk}. If the bias fixing is of uncertain quality then .gld (old scheme) or .glr solutions should used. If no ambiguity resolution was attempted in \textit{solve}, then the last solution will be written to gcr or glr. Any combination of the loose solutions can be used, but (for rigor) only one from each session of data.

Although the nrms scatter of the double difference residuals from the \textit{solve} run is passed in the \textit{h-file}, this information is not used; that is, \textit{globk} does not automatically scale the covariance matrix from \textit{solve} during the processing. It is possible, however, to explicitly rescale the matrix by adding the scale factor to the input list of h-files as described in Chapter 3.

In previous versions of \textit{globk}, it was often necessary to create an a priori file of station coordinates using the ephemeris file generated by \textit{htoglb}. With \textit{globk} 4.0 if you have a standard apriori file (e.g. for ITRF96 stations), you do not need to add coordinates for new stations since these will now be read from the binary h-file, written there by \textit{htoglb} from the a priori coordinates used by \textit{solve} and stored on the GAMIT h-file. Updated coordinates can later be added to the a priori file from the \textit{globk} or \textit{glorg} output (print) files. If you do wish to create a complete station a priori file from the ephemeris file from \textit{htoglb}, a convenient procedure is outlined below:

Imbedded in the ephemeris file in the form of comments are the station coordinates which were used as apriori values in the \textit{solve} run. If a station a priori coordinate file is not available, one can be made by editing a file by the name you want for this file (e.g., \textit{myexp.apr}) and reading into it the ephemeris file (e.g., \textit{svs_myexp.svs}). In the \textit{vi} editor this is done by typing:

```
:r svs_myexp.svs
```

Now you want to delete all of the ephemeris line using (again \textit{vi})

```
:g/^ /:d
```

This command deletes all lines with a blank as the first character.

Then you need to remove the X from the starts of the station position lines. This can be done using

```
:1,$ s /^X/ /
```

The station coordinate file is now ready can be saved using

```
:wq
```

An alternative method is use \textit{awk} and \textit{grep}. With these UNIX utilities the .apr file can created using:

```
grep '^X' svs_myexp.svs | awk '{print substr($0,2,128)}' > myexp.apr
```

The station coordinate file will have multiple entries for each station at this time. This is no problem for \textit{globk}, even if the values are inconsistent. (In this case the last occurrence of a station name will be used). If you want to "clean" up the file (and this is a good idea), then you can use "\textit{sort}" to get all the lines referring to the same station together. To so this you type:

```
% sort myexp.apr > myexp.srt
```

and then edit the file to remove duplicates. Save this file to what ever name you like. If you want to put it back into the original station position file then use :w! myexp.apr in
vi. The above steps only need be done once. In the future, there may be a standard station file that can be used for all experiments since the file contains not only station positions but also their velocities. An alternate approach using the Unix grep command is given in the /stdrel/examples directory.

If there is a need to change the names of stations for avoid conflicts between solution files generated at different institutions or times, you may want to run htoh (for GAMIT h-files; see 5.6) or another auxiliary program prior to running htoglb. However, this step is seldom necessary now that the rename feature is available in globk (see 3.1).

htoglb online help file

(may differ from current online version)

HTOGLB: Converts GAMIT hfiles and SINEX files to binary input files for the GLOBK kalman filter.

Runstring:

% htoglb [dir] [ephmeris file] <input files>

where [dir] is the directory for the output files, and [ephmeris file] Name of the file for output of the ephemeris for the satellites. Can then be used as input to GLOBK.

<input files> is a list of input files with and optional constraints of the form -C=<constraint> for sinex files.

The output naming scheme is:

hyymmddhhmm_XXXX.g[l/c][r/x] for GAMIT h-files

hyymmddhhmm_XXXX.gls for SINEX files

where yymmddhhmm is the year, month, day, hour min of the mid-point of the GPS data in the solution,

XXXX is the four character code from the m-file name (i.e., m00006a.ddx). For SINEX files, the XXXX is the first 3 characters plus the character before the last '.' in the name

and .g[l/c][r/x] or .gc[r/x] is the type depending on the type of analysis. [l/c] for loose or constrained analyses; [r/x] for biases free or fixed.

To replace the apriori constraints in SINEX files the -C=<new constraint> may be used preceding the SINEX file name where <new constraint> is the constraint in meters. (Only station coordinates). If -C=0 is used the constraints are left unchanged. This form may be used multiple times in the runstring and stays in effect until changed.

e.g., % htoglb . svsinex -C=10 emr08177.snx emr08187.snx -C=0.1 cod08177.snx replaces the constraints in the emr files with 10 meters, and the cod file with 0.1. For some SINEX files there can be numerical problems if the new constraint is made too large.

NOTES: Constraints are changed only if they are smaller in the SINEX file.

If the outputs are required in the current directory then the directory name can be given as '.' or './'. The '/' at the end of the directory name is optional. (It will be put there if it is not there.)

htoglb output

(may differ from current online version)

As htoglb runs it produces summary information about the solutions it finds in the h-files. This information includes the number of stations (and a list of these), the number of satellites (and a list), and the number of parameters estimated. At the end of processing
each h-file, the number of solutions in the h-file is printed. The output from htoglb can be re-directed to a file, and this file can be kept as a record of the processing of the data.

A sample run of htoglb is given here:

```
meinesz[180] htoglb . svs_gotex.apr /data3/tah/gotexh/h*a.???.gm
```

<table>
<thead>
<tr>
<th>Processing file</th>
<th>1 h-file</th>
<th>/data3/tah/gotexh/hgotxa.312.gm</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are</td>
<td>20 stations in /data3/tah/gotexh/hgotxa.312.gm</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Full name</td>
<td></td>
</tr>
<tr>
<td>1 ARGE</td>
<td>Buenos_Aires</td>
<td></td>
</tr>
<tr>
<td>2 AROG</td>
<td>Algonquin_TI</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 YKNF</td>
<td>YELLOWKNIFE</td>
<td></td>
</tr>
<tr>
<td>There are</td>
<td>7 satellites in /data3/tah/gotexh/hgotxa.312.gm</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 PRN_06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 PRN_09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 PRN_11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 PRN_13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 PRN_12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 PRN_03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 PRN_08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Found 123 parameters estimated in solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are</td>
<td>20 stations in /data3/tah/gotexh/hgotxa.312.gm</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Full name</td>
<td></td>
</tr>
<tr>
<td>1 ARGE</td>
<td>Buenos_Aires</td>
<td></td>
</tr>
<tr>
<td>2 AROG</td>
<td>Algonquin_TI</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 YKNF</td>
<td>YELLOWKNIFE</td>
<td></td>
</tr>
<tr>
<td>There are</td>
<td>7 satellites in /data3/tah/gotexh/hgotxa.312.gm</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 PRN_06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 PRN_09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 PRN_11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 PRN_13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 PRN_12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 PRN_03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 PRN_08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Found 123 parameters estimated in solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Solutions extracted from /data3/tah/gotexh/hgotxa.312.gm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```

<table>
<thead>
<tr>
<th>Processing file</th>
<th>2 h-file</th>
<th>/data3/tah/gotexh/hgotxa.313.gm</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are</td>
<td>21 stations in /data3/tah/gotexh/hgotxa.313.gm</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Full name</td>
<td></td>
</tr>
<tr>
<td>1 AROG</td>
<td>Algonquin_TI</td>
<td></td>
</tr>
<tr>
<td>2 ARGE</td>
<td>Buenos_Aires</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 YKNF</td>
<td>YELLOWKNIFE</td>
<td></td>
</tr>
<tr>
<td>There are</td>
<td>7 satellites in /data3/tah/gotexh/hgotxa.313.gm</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 PRN_06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 PRN_09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 PRN_11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 PRN_13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 PRN_12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 PRN_03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 PRN_08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Found 126 parameters estimated in solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are</td>
<td>21 stations in /data3/tah/gotexh/hgotxa.313.gm</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Full name</td>
<td></td>
</tr>
<tr>
<td>1 AROG</td>
<td>Algonquin_TI</td>
<td></td>
</tr>
<tr>
<td>2 ARGE</td>
<td>Buenos_Aires</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 YKNF</td>
<td>YELLOWKNIFE</td>
<td></td>
</tr>
<tr>
<td>There are</td>
<td>7 satellites in /data3/tah/gotexh/hgotxa.313.gm</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 PRN_06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The output continues in this fashion until all of the input files have been processed. The binary h-files produced to this point were h88110706a.glb h88110706a.glc h88110806a.glb h88110806a.glc

The emphesis file from htoglb looks like this. The example below is from one of the TREX experiments. (The output has been modified slightly to fit on the page. Any line with a non-blank character in column one is treated as a comment.)

```
* EPHemeris Information from /data3/mnh/gp/hvgs/hv57.265
X BUHL -266908.5659 -447167.5708 3670491.1942 0.00 0.00 0.00 1987.8
X CENT -262715.4893 -459602.4629 3546190.0445 0.00 0.00 0.00 1987.8
X CHIR -236417.0285 -330761.9855 5430055.7005 0.00 0.00 0.00 1987.8
X ESTR -269702.6796 -435439.3301 3788077.5930 0.00 0.00 0.00 1987.8
X MUSA -235621.5670 -466473.0343 3668460.4064 0.00 0.00 0.00 1987.8
X OVRD -241042.3635 -467780.6741 3383686.7002 0.00 0.00 0.00 1987.8
X PLAT -1240708.0338 -472045.3507 4094841.6430 0.00 0.00 0.00 1987.8
X FVER -2522542.7058 -467003.6907 3522866.7474 0.00 0.00 0.00 1987.8
X SCPW -2637874.3720 -4584071.7860 3552375.8946 0.00 0.00 0.00 1987.8
X VNDN -2678071.5492 -4525451.7896 3597427.3893 0.00 0.00 0.00 1987.8
X WSPD -1402233.0781 -458091.6469 4266045.8718 0.00 0.00 0.00 1987.8
X YONF -1224046.4364 -268933.2061 5633432.5576 0.00 0.00 0.00 1987.8
```

htoglb error messages

Htoglb generates only a few error messages. The most common of these is that it can't find a h file (if the name is explicitly given for example), or that a selected file is not a h file (in this case the first line in the file which did not match the expected pattern is printed). This error may be generated if the version of GAMIT producing the h file is inconsistent with the version of htoglb being used.
File errors generated by *htogl* (and most of the other programs in the suite) are of the form:

\[\text{<Type>} \text{ error } \text{nnn} \text{ occurred } \text{<action>}\text{ing } \text{<file>} \text{ in } \text{<module name>}\]

and then possibly, depending on the severity of the error,

\[\text{Program terminating in } \text{<module name>}\]
\[\text{stop in report_error}\]

where

\[\text{<Type>}\] is the type of error. This will usually be:

- `IOSTAT` for standard fortran input/output errors,
- `FmpOpen/Read/Write` for binary file manipulation errors, and in some cases
- `VREAD/VWRITE` for large binary file manipulations.

\[\text{<nnn>}\] is the error number. For IOSTAT errors, these can be found in the fortran manuals. Some important ones to remember are

- `-1` is EOF
- `118` is file not found.

For the other classes of errors, `-1` means EOF, and `-6` means file not found. In general (except for the `-6` error) the `Fmpxxxx` class of errors are the negative of the fortran IOSTAT errors. A `-1` error when a string is being decoded means that there were not enough items in the string to satisfy the read. (Usually because something has been forgotten.) The other class of error is `112` meaning illegal character in format which usually means that a non-numerical value was encountered when one was expected.

\[\text{<action>}\] is the action being carried out when the error occurred. These generally fall into the classes of opening, reading, writing, decoding with the last of these usually used only for string manipulation.

\[\text{<file>}\] is the name of the file being worked on at the time, or for decoding errors, the string (or part of it) which was being manipulated.

\[\text{<module name>}\] is the name of the subroutine where the error occurred. This is sometimes as general utility routine (such as `read_line` or `multiread`) and it could be difficult to determine exactly where the error occurred. In these cases either the string or the file name is useful for isolating the error.

### 2.2 *apr_file*

Although the file of apriori station coordinates can be extracted from the *htogl* output, most frequently we use a standard file of ITRF positions and velocities (available in the updates/sites directory in the software distribution area). After an initial solution, the coordinates of new stations can be added to this file (or used as a supplementary file—see the `apr_file` command in Section 3.1) by extracting them from the print (.prt or .org) output of *globk* or *glorg*. Specifically the print file includes a listing of the estimated cartesian coordinates and velocities at the midpoint time of the solution in `apr_file` format but with the character string 'Unc.' in the first four columns; hence the command `grep 'Unc.' [apr file name] > temp.apr` will write these coordinates to the file `temp.apr`; to complete the task, you need to remove 'Unc.' from the first columns of the output.
A new feature with version 5.03 is to allow non-secular terms to be added to the apriori coordinates of the stations. These terms are added using additional lines in the apr_file, detected by EXTENDED being the first token on the line. The additional terms can be periodic, exponential, or logarithmic or changes in the position and rate. The format of the new lines is as follows:

```
EXTENDED <Site Name> <Type> <YY MM DD HR MN> <Parameter> <Coefficients for NEU>
```

where EXTENDED should be preceded by at least one blank. The line is not case sensitive.

The following <Types> are allowed:

**EXP**  
Exponential variations: The exponential starts at the time given by <YY MM DD HR MN> and the <Parameter> is the decay time, in days, for the exponential (i.e. exp[-dt ime/Parameter] where dt ime is time after the start time. The coefficients are the amplitudes for North, East and Up. Units meters. Example:

```
EXTENDED JPLM_GPS EXP 1992 6 28 0 0 30.0 0.010 0.005 0.00
```

results in 30 day exponential with amplitude of 10 mm North, 5 mm East and zero for the height.

**LOG**  
Logarithm variations: The logarithmic function is applied after date <YY MM DD HR MN> and the <Parameter> is time normalization value in days (i.e., log(dt ime/Paramter) where dt ime is time from the start time. The coefficients are the amplitudes for North, East and Up. Units meters. Note: No data should be included that is within the normalization parameter of the start time (i.e., log(0) = -infinity). Example

```
EXTENDED JPLM_GPS LOG 1992 6 28 0 0 300.0 0.010 0.005 0.00
```

Results in 300 day logarithmic with amplitude of 10 mm North, 5 mm East and zero for the height.

**PERIODIC** periodic variations: Applied to all dates. The <YY MM DD HR MN> is the zero phase time of the periodic signals and the <Parameter> is the period in days (i.e., cos(2*pi*dt ime/Parameter) where dt ime is time from <YY MM DD HR MN>. The coefficients are paired as the cosine and sine coefficients for North, East and Up. Units meters. Example

```
EXTENDED JPLM_GPS Periodic 2000 1 1 0 0 365.25 0.0 0.0 0.0 0.0 0.001 0.009
```

results in annual signal in height with cosine amplitude of 1 mm and Sine amplitude of 9 mm.

**OFFSET**  
Episodic change in position and velocity. Applied after <YY MM DD HR MN> <Parameter> in this case is not used (value of 0.0 should be given). The coefficients are paired as offset and rate changes applied after the start date (i.e., offset + dt ime*rate where dt ime is time after start time. Units: offset meters, rate meters/year. Example:

```
EXTENDED JPLM_GPS Offset 1992 6 28 0 0 0.0 0.003 0.001 0.004 0.004 0.000 0.000
```

results in north position and velocity change of 3 mm and 1 mm/yr, East position and velocity change fo 4 mm and 4 mm/yr. No change in height.

Each of the terms given should be unique. If duplicates (in terms of epoch, type and parameter) are given, the lastest one read will be used. This extended model is meant for use with time series analysis. The non-secular terms are saved in any output binary h-file. The position estimates and adjustment output by globk and glorg include these terms evaluated at the epoch of the output solution. Finally, notes that the EXTENDED feature
of the apr_file differs in the way it handles position changes from hfupd (Section 5.6) and the eq_file rename feature (Section 3.1). The eq_file rename changes the "observed" station position in the input hfile whereas the EXTENDED feature in the apr_file changes the "modeled" position. Thus, the signs are opposite to achieve the same effect. To correct erroneous heights in h-files, hfupd is now the preferred means. the EXTENDED offset feature in the apr_file should only be used with glred for repeatability runs to account for coseismic offsets and rate changes, whereas the eq_file feature and hfupd are used in globk runs when velocities are to be estimated.
3. **RUNNING GLRED, GLOBK, AND GLORG**

To run `glred` or `globk` you will need a file with a list of quasi-observation (binary h-) files to process, a file of a priori coordinates and velocities for the stations, a table of Earth orientation parameter values for the times of your data, and `globk` and `glorg` command files. The easiest method of generating the input global file list is to use the `ls` command. Conventionally the list files are given with a .gdl extent (global directory list) but the name is arbitrary. For example, to generate a gdl file for the biases-free h-files you have created (with `htoglb`) for the 1996 Eastern Mediterranean survey, you might use

```bash
% ls ../glbf/h*.glr > emed96_free.gdl
```

To obtain an alternate list for the biases-fixed h-files, you might use

```bash
% ls ../glbf/h*.glx > emed96_fxd.gdl
```

The .gdl file may optionally contain additional parameters following each h-file name to indicate reweighting and coupling; e.g.

```
 h9609061159_igs1.glr 1.0 +
 h9609061159_igs2.glr 1.0 +
 h9609061159_emed96.glx 4.0
```

where the numbers indicate the relative weighting of the estimates and covariance matrix in the solution (e.g., the third h-file is to be downweighted by 4.0 [a factor of 2 in uncertainty]); and the + specified for the first two files links all three together (applicable only for `glred`—see *Testing coordinate repeatabilities* in Section 3.4). There is an optional additional value that can be included on each line to rescale the diagonals terms of the covariance matrix. It is given in parts per million to be added to 1.0 and is useful primarily for stabilizing SINEX files which have had their constraints removed. An example of the use of this parameter is

```
 h980126_stan.glx 4. 2 +
```

which would scale the covariance matrix by 4.0 and the diagonal elements additionally by (1.0 + 2*1.d-6).

The command file is either created with an editor or copied from a previous example (such as those given in Section 3.4). The command file controls the actions of `globk` through the use of commands of three types:

1. **Names of files:** the scratch files used by the program, and the files containing a priori station positions, satellite ephemeris information, and earthquake/rename commands.
2. **Output options** which can be used to tailor the output for a desired run. (This becomes a means for eliminating output that will not be needed.)
3. **Specification of the uncertainties and the stochastic nature of the parameters in the solution.** These commands also determine which parameters are estimated, and how the information in h-files is treated.

For commands of types (1) and (2), if a file or option is not mentioned, it will not be used. Thus, for example, to invoke `glorg` from within `globk`, you must include `org_cmd` with the name of the `glorg` command file; and to get a `globk` back solution, you must include `bak_file` with the name of the back solution print file.

Commands of type (3) are more complicated since they depend on how the parameter was treated in the analysis that produced the h-file and in some cases on combination of
parameters estimated. For parameters estimated in the previous analysis (i.e., present on the h-file) entering a non-zero value in the apr_ command assigns an a priori standard deviation of that value to the parameter. If the parameter has been constrained in the previous solution, that constraint is not removed or altered, but rather the new value is added to it. Thus, we recommend that you do not apply constraints any earlier than you need to—only at the very last stage (glorg) for station coordinates and at the time of daily combination for orbital and Earth orientation parameters. Markov command (mar_) add process noise with each new h-file, so that they have the effect of loosening the a priori (apr_) value over time. Station coordinate and orbital parameters must be present on the input h-file in order to be used in the solution or have constraints applied. For station velocities and Earth orientation parameters (EOPs), however, globk can generate partial derivatives and add these to the solution even if they were not on the h-file.

If a value of zero is entered for a parameter or if the parameter is not mentioned in the command file (no apr_ command), the result depends on whether it was on the input h-file and whether it is coupled to other parameters that are estimated. In most cases (station parameters and velocities, orbital parameters) entering zero or omitting an entry means to ignore the parameter and take no action. This means that if a parameter is included in an input h-file and you don't mention it in the command file, it will implicitly retain the constraints that it had originally while not being listed explicitly in the solution. For example, if the h-file from the primary data analysis was created (e.g., by GAMIT) with loose constraints on orbital parameters and you omit the apr_svs command, the orbits remain implicitly loose in the globk solution; if the orbit was constrained in an earlier solution, those constraints implicitly remain (through the station coordinates and EOPs) even though the orbital parameters no longer appear in the solution. A special case arises when estimating EOPs since they are directly coupled to station coordinates. In this case, entering zero for any station coordinate will cause it to be fixed and used to determine the EOPs.

In some cases, we want to explicitly fix a parameter without relying on the implicit rules used in globk. In these cases, the letter F can be used for the apriori uncertainty of a parameter. (Giving zero for the a priori sigma will not work because zero would generate the same action (or lack there of) as not saying anything about the parameter.) F for an uncertainty will be interpreted as zero uncertainty in the apriori value of the parameter (i.e., fixed) but the parameter will be given parameter space and included in the output of the program. (This latter feature is useful for keeping a record of the exact values of the parameter used in the solution.)

In summary, the basic rules of globk’s interpreter are (consult the example command file below for commands):

1. The apriori values of parameters (station positions and velocities, and satellite orbit information) are taken from the files given by the apr_file and the svs_file. If some quantity does not appear in these files, then the apriori value will be the apriori value from solve (post 3.2 versions of htoglb) or the estimate of the parameter from its last occurrence in the input global files. (If the parameter was originally fixed in solve, then this value will used.)

2. If any parameter that does not explicitly depend on other parameters is given zero uncertainty (either explicitly or by neglect), it will not be constrained at all, and it will not appear in the output of the solution. (Use of the all option for station and satellite names allows easy assignment of uncertainties to all parameters.)

3. If any parameter that does explicitly depend on other parameters that are being estimated, is given zero uncertainty (either explicitly or by neglect), it will be fixed to its
apriori value (independent of where this value comes from, see 1). Even though it is fixed, its value will not appear in the output. If you want to explicitly control globk use the $F$ option for the uncertainty of a parameter you wish to fix.

If the three rules above are kept in mind, then it should not be difficult to get globk to do the solution you want. Since globk solutions usually take only a few minutes to run for a typical GPS campaign, and less than half an hour for a complete sequence of experiments, it is recommended that you play a little with the options and the implicit rules just to be sure that you understand them.

Orbits are treated somewhat differently from other parameters in globk. The integration epoch of the orbit (i.e., the epoch to which the orbital elements refer) is passed from arc through the $h$-files to globk and globk keeps track of this quantity. While the IC epoch remains the same, the stochastic parameters associated with the orbital arcs are used. However, when the IC epoch changes, the uncertainties that were given for the apriori values of the orbital elements are reimposed on the estimates, thus effectively breaking the multiday orbital arc. Whenever, the IC epoch changes, globk prints a message to std out saying that it is updating the IC epoch. These messages should be checked when data is first processed to ensure that the correct multiday orbital arcs are being used. (For example, an incorrect reference to a $t$-file could cause a break in the middle of a multiday orbit arc.) The parameters representing satellite antenna offsets, though associated with the orbital parameters, are not treated on an arc-by-basis, but rather globally, so that that a single set of parameters is used for each satellite for a solution.

To run globk you type:

```
% GLOBK <std out> <print file> <log file> <experlist> <command file>
```

where

- `<std out>` is a numerical value (if 6 is typed then output will be sent to current window, any other numerical value will send output to a file fort.nn)
- `<print file>` is a numerical value or the name for the output print file with the solution in it. If the print file already exists, then the solution will be appended to it unless ERAS is specified for prt_opt. For output to your current window, 6 may be used.
- `<log file>` is a numerical value for the log file that contains the running time for the program and the prefitt $c^2$ per degree of freedom value for each input covariance matrix file. If the log file already exists, then the new log will be appended to it. For output to your current window, 6 may be used.
- `<exper list>` is a list of binary $h$-files to process. Any file name may be used but convention is to end it with .gdl.
- `<command file>` is a list of commands. The command file controls the options in the program, see the annotated listings below.

The next two sections describe in detail the commands of the globk/glred and glorg command files. Following these, in Section 3.3, we describe in both theoretical and practical terms the various approaches you might take to defining a reference frame for GPS data analysis. Section 3.4 gives examples for analyzing daily solutions to obtain a time series for error analysis and for combining multi-year solutions to obtain a time series or velocities. The last two sections of this chapter give examples of glred/globk and glorg outputs and error messages.
With GAMIT/GLOBK release 10.0 there is a new script `sh_glred` that allows you to combine efficiently large numbers of H-files from a global and/or regional analysis and plot the time series. Since the control files for this script are the same as for `sh_gamit`, it is described in the GAMIT manual.

### 3.1 `globk` command file

```
* Annotated example of a GLOBK command file *
* (used for the analysis of GPS Data). *
* ***
* General rules:
* ------------------
* (1) All commands start with a blank in column one. All other lines, *
* including blank lines are considered comments and are ignored. *
* This also applies to apriori station and satellite position files.
* Comments may also add at the end of any command line by using the *
* ! or # character as a delimiter. *
* (2) Only the minimum redundant set of characters for commands, site *
* names or satellite names are needed. For clarity, it is recommended *
* that the full command or name be given. This also avoids problems *
* with future releases of the software where the minimum redundant *
* sequences may change when new commands are introduced *
* (3) Satellite names are of the form PRN_nn where nn is the PRN number *
* of the satellite. These names are generated by htoegl. (Most of *
* the time individual satellite names are not needed.) *
* (4) In general the order in which commands are given has no effect ex-
* cept that the second issuance of a command overwrites the effects *
* of the first (for the specific case given, see below for example *
* of the application of this feature with station coordinates). *
* However, There are three commands that will have no effect *
* unless they are issued before all others. They are the COM_FILE, *
* SRT_FILE, SRT_DIR, MAKE_SVS, and EQ_FILE commands, as described *
* below. *
* (5) Blank lines are ignored, and may be used to structure the command *
* file. *
* (6) All file names may be absolute or relative (i.e,../../tables/glb.apr) *
* and are limited in length to 128 characters. *
* (7) Case is not important. All strings (except file names and *
* descriptors are converted to upper case.) This does mean however *
* that station names passed to globk must be uppercase (this is *
* currently the case). *
* (8) Groups of commands that are shared between different globk (or *
* gorg) input files can be included via the SOURCE command, which *
* can be issued one or more times after the required initial files *
* describe in (4). For example, source site_constraints could be *
* used to insert a set of apr_site commands (see below) contained *
* in the file 'site_constraints'. *
```

* Start the command file
* -----------------------
* The following five commands, if present, must be issued before all
* others or they will have no effect:
* 
* Set the names for the "scratch files".

com_file glbcom.bin ! Contains the globk common blocks
srt_file glbsrt.bin ! Contains direct access time-ordered list
*
* of global files

* These files do not need to exist before hand, they are simply used to
* save intermediate results. The com_file is used to store information
* that is needed to rerun the output program glout and the reference-
* frame-fixing program glorg. If you are not calling glorg from within
* glred in performing daily solutions, you can save time by omitting
* the com_file command and hence not writing out the solution. (Program
* globk currently writes the com_file automatically whether you specify
* a name or not, but this will be changed in the future.) Note that the
* com file is not backward compatible between versions of the software.

* If you want the data processed in reverse time order, then uncomment
* the line below. If this is done the station coordinates, Earth
* rotation parameters, and satellite orbit parameter will refer to the
* first epoch of data and not the last as it does in the default case

# srt_dir -1

* The preferred method for generating the a priori values of satellite
* parameters now is to read them from the input binary h-files and write
* them to a file specified at the top of the command file:

make_svs svs.apr [ Z ]

* When h-files from the same day are combined, the elements from
* the first hfile read will used. If the svs file already exists, it
* will be overwritten. If the make_svs command is missing, globk will
* look for the svs_file command which was formerly used to specify a
* list of apriori* satellite parameters written by htofile or unify_svs:
* apr_svs <filename>
* If the optional Z is specified after the file name then the radiation
* parameters are set such that the direct radiation is 1.0 and all
* the other radiation pressure parameters are zero. This option is
* useful for stabilizing orbital solutions but can have adverse
* consequences if you tightly constrain a parameter that has been
* correctly adjusted to a non-zero value. When the rad_rese command is
* used, it is recommended that the Z-option be invoked. The default is
* not to invoke it.

* If you have an earthquake file, necessary for earthquake parameters
* and station renames, it must be entered here:

eq_file landers.eq

* Additional commands in any order:
* ==================================================

* Now start the commands which do not depend on order. (When the first
* of these commands is issued, the program will first read all of the
* input global files and build up the list of stations and satellites to
* be used in the analysis.

* One more scratch file is needed. This file contains the covariance
* matrix for the solution, and if a back solution is to be run then
* contains the covariance of each global file in the solution. (In
* this latter case the file can get very large. Generally it is less
* than 1 Mbyte per global file, but for VLBI with over 1000 experiments
* is over a Gbyte.)

sol_file  glbsol.bin

* Filtering input data
* =====================

* You can have glred or globk automatically exclude from its solution
* h-files that contain corrupted data or a station for which you have
* no reasonable a priori coordinates using the command

MAX_CHII <max chi**2 Increment> <max prefit difference> <max rotation>

where the three arguments give tolerances on the chi-square increment,
change in a priori parameter values, and allowable pre-solution
rotations of a network before combining a new h-file.

<max chi**2 Increment> gives the maximum allowable increment in the
chi**2 when a new h-file is combined in the solution. In this version
of globk these data will not be added to the solution and the solution
will continue to run. The same procedure will happen with negative
chi**2 increments (which result from numerical instabilities and can be
solved often by tightening the apriori constraints and reducing the
magnitudes of process noise on the stochastic parameters. More detail
diagnostic information is now output to the log file if a negative
chi**2 increment occurs. The default value of max_chii is 100.0.

<max prefit difference> is maximum difference in the prefit residual
for station coordinates. This value also sets the limits for other
parameters in globk but with the input value internally scaled to
provide comparably reasonable tolerances for the other parameters. For
EOP, the prefit tolerance is 10 times the surface rotation implied by
the station coordinates, and for orbital initial position and velocity,
1000 times the station tolerance. If the prefit difference exceeds
this limit, then the estimate for this parameter is not included (row
and column removed from the covariance matrix), or in the case of a
station coordinate, all three coordinates are excluded. The default is
10,000, corresponding to 10 km for a station position. When the aprioris
are well known, this value can be set small (e.g., 0.1 for global
networks with good orbits, corresponding to 10 cm for station position,
32 mas for EOP, and 100 in orbital initial position).

<max rotation> sets the tolerance for a rotation of the prefit station
coordinates before they are compared with the current solution. This
check complements the new feature of globk in which an orientation
difference between the stations of the input h-file and the current is
computed. If this value exceeds <max rotation>, then the rotation is
removed from the station coordinates and added to the EOP parameter estimates and a message is written to the screen. The purpose of this feature is to avoid having to set the Markov values of the EOP parameters inordinately large to handle a few h-files for which the EOPs of the phase processing had large errors. For global networks, the rotation can be determined well from data, so setting a small <max rotation> value (e.g. 20 mas) is useful to maintain small Markov values. For regional networks, the rotation is poorly determined, so the tolerance should be kept large to avoid erroneous rotations that can cause numerical problems. The default is 10,000 mas.

* Station coordinate file
* ---------------------------------

* File containing a list of a priori station coordinates and velocities
* to be used in the solution file (input). The file is free format, but
* must contain:
* Site_name       X    Y    Z    Xdot Ydot Zdot Epoch
* where XYZ are Cartesian geocentric coordinates in meters,
* Xdot Ydot Zdot are rates of change of these coordinates (m/yr)
* and Epoch is year and fractional year (i.e., 1990.27) to which the
* coordinates refer.

apr_file grece.apr

* Reissuing the apr_file will result in additional files being read,
* with the coordinates for a station taken from the last file in which
* that station appeared.

* A priori Earth-rotation table
* ---------------------------------

* Command to allow the polar motion/UT1 series used in the analysis to
* updated. Form:
* in_pmu <file name>
* where <file name> is a file containing the new series. The pole
* position and UT1 values must be uniformly spaced, and the UT1 should
* NOT be regularized. The format of the file (matches the IRIS format)
* is
* yyyy mm dd hh min  X-pole +-  Y-Pole +-  UT1-AT +-  
*               (asec)     (asec)      (tsec)     
* 1980 1 1 0 0     0.1290 0.001  0.2510 0.001  -18.3556 0.0001  
* 1980 1 6 0 0     0.1250 0.001  0.2420 0.001  -18.3682 0.0001  
* etc
* NOTE: The sigmas on the values are not used in globk.
* NOTE: This command only works with post-9.10 releases of solve.

* Performing a back solution
* ---------------------------------
*
* The bak_file command invokes a Kalman back solution, allowing you to
* see the estimates for stochastic parameters, e.g., in testing
* repeatability of coordinates or baselines. The name of the back-
* solution file is arbitrary, but has .bak as an extent. If this file
* exists, it will be appended by subsequent runs, so you should usually
* delete previous versions before running. Running a back
* solution will generally treble the run time for the solution, and is
* not needed unless you want to extract the values obtained for the
* markov elements (e.g., orbits, polar motion, UT1-AT). It is not
* necessary to run the back solution if you are only interested in
* station positions and velocities for example. If the back solution
* is to be run, then the DESCRIPT command should also be given so that
* you don't get nulls as the first line of output file. When a back
* solution is run, you have the option of generating post fit parameter
* residuals using the comp_res command. For the very loose GPS
* solutions used at the moment this is not a particularly useful feature
* It also doubles the length of time needed to do the back solution.
* Currently it is recommended that this command not be used. (The
* command is commented out below)

    bak_file grece_fxd.bak
    descript Test run of network with orbits and station DDDD fixed.
    # comp_res yes

* The form bak_file @.bak may also be used for the file name in which
* case the @ is replaced by corresponding characters from the experiment
* list file. i.e., for the case above, if grece_fxd.gdl was the
* experiment list, the bak file name would be grece_fxd.bak.

* Print commands
* ==============
* The output from globk is normally produced twice, once to your screen
* and once to your print (prt) file specified in the runstring. If a
* back solution has been commanded by specifying a bak_file, then a
* second file output is produced. The quantities to be written to the
* two files and the screen are specified separately with the prt_opt,
* bak_opt, and crt_opt commands, respectively. The specification is
* made with either a 4-character keyword or a binary-coded (bit mapped)
* integer value. The keywords, corresponding bits, and their meanings
* are as follows:
* CODE  BIT  Decimal Meaning
* -----  ---  ------- --------
* CORR   0      1    Output correlation matrix
* BLEN   1      2    Output baseline lengths and components
* BRAT   2      4    Output baseline lengths and components rates
*                        of change.
* CMDS   3      8    Write a summary of the globk command file to the
*                   globk and glorg output files.
* VSUM   4     16    Write the short version of the velocity field
*                   information (one line per station)
* 5-9    32-512 NO LONGER USED (see POS_ORG and RATE_ORG below.
* RAFX  10   1024    Fix the Right ascension origin of the system.
* MOUT  11   2048    Only output baselines if both stations are Markov.
*                   (Used to limit output in large back solutions)
* COVA  12   4096    Output full precision covariance matrix.
* PSUM  13   8192    Output position adjustments in summary form
* GDLF  14  16384    Output the contents of the GDL files used
* DBUG  15           Output matrix details when there are negative
*                        variances and negative chi**2 increments
* ERAS  16           Erase the output file before writing solution
* NOPR  17           Do not output the file (either crt, prt or org
*                        depending on opt set).

* If the keywords are used, they must be separated by a colon. For
* example, to write to the print file baseline lengths, baseline rates,
* and a summary velocity field, set

    prt_opt blen:brat:vsum

* or, equivalently, prt_opt = 22

* A value of -1 will print everything. This is not recommended since
* there are coordinate rank deficiency handling routines which are
* invoked when all bits are set. If no command is given, then only the
* parameter estimates, adjustments, and sigmas will be output.
* In the back solution, only printing of baseline length and components
* is implemented.

    bak_opt blen

* For back solutions there is an additional print command that allows
* the user to specify which stations should always be printed in the
* bak_file. It has the form

    bak_prts clear all <list of stations>

* where the CLEAR is optional and should normally not be used since
* it will override the internal rules for outputting a station. ALL
* will select all stations. The following rules apply for outputting:

    --Site positions--:
* All and only sites that are Markov (i.e. mar_neu or mar_site command *
* used) or are affected by an earthquake (see eq_file command) will be
* output unless CLEAR is used in the bak_prts commands, in which case
* only those sites listed in the bak_prts command will be printed
* independently of whether they are Markov or affected by an earthquake.
* In all cases, only sites that were observed on the day being output
* will be printed.

    --Baselines and baseline components--:
* In general, for a baseline to be printed, both sites in the baseline
* need to pass the criteria to be output. For baselines to be printed
* bak_opt bit 1 (decimal value 2) must be set. If only bak_opt 2 is
* set all baselines between sites observed on the day will be printed.
* (This can become a long list). Restrictions can be placed on the
* baselines printed using bak_opt 2050, where bits 2 and 11 have been
* set to restrict the baselines to only those affected by an earthquake,
* (including pre and post-seismic intervals extended by 2 days) or are
* Markov. Use of bak_prts allows additional sites to be printed that do
* not pass the earthquake or Markov rules.
Creating a combined h-file

The OUT_GLB command allows a binary h-file to be generated with globk. This feature is typically used to combine all the data collected in a single experiment into a single h-file for later processing.

```
out_glb com_@.GLX
```

where @ takes in the characters from the experiment list file, e.g. if the experiment list was exp_June92.gdl then the output global file would be com_June92.GLX. If you forget to set out_glb in your globk run, you can create an output binary h-file from the globk com_file the new program glsave, described in section III.e.

Selecting stations

A station may be excluded from the analysis by name, geographical region, or the number of times it appears in the input h-files. The default is to include all stations that appear in the h-files. To exclude by name, use the USE_SITE command, either starting with CLEAR to exclude all, and then adding the names of those you wish to include, or starting with ALL (default) and subtracting those you wish to exclude:

```
use_site clear
use_site sit4 sit5 sit6 ...etc.
```

or

```
use_site -sit1 -sit2 -sit3
```

To select by region, use the USE_POS command to define a box within which you want to include or exclude stations:

```
use_pos < +/- > <Lat LL> <Long LL> <Lat UR> <Long UR>
```

where + indicates inclusion and - exclusion of stations within the box defined by the latitude and longitude (postive east) of its lower-left (LL), and upper-right (UR) corners. Thus the command

```
use_pos - 30.0 -125 35.0 -115.
```

specifies exclusion of stations between 30 and 35 degrees north and 115 and 125 degrees west (i.e., southern California). This command is used in conjunction with use_site. If use_site clear is initially specified, the use_pos + can add stations within a defined region; conversely, is use_site all is initially specified, use_pos - can remove stations with a region. The use_site command can be issued after use_pos to add or remove specific stations by name.

To select stations on the basis of the number of times they have been observed, use the USE_NUM command followed by an integer
* specifying the minimum number of times a station must appear in the
* h-files in order to be included in the analysis. The command is
* applied after all 'use' options have been processed, so that it
* affects only stations that are otherwise included.

* Selecting and constraining parameters to be estimated
* ======================================================================

* For each type of parameter in the solution there are commands
* to specify the a priori sigmas. Since a Kalman filter requires
* some level of a priori constraint, if these commands are omitted
* for a particular group of parameters, these parameters will be
* ignored in the the input binary h-files. This is equivalent to
* allowing the parameter to freely vary between sessions of the data.
* You can also allow parameters to vary stochastically between
* observations (i.e., h-files) by specifying Markov process noise to
* be added. Specifically, the variations are modeled as random walks
* with a specified power spectral density (PSD) of the white noise
* noise process driving the random walk. Since the variance of the
* difference between two values in a random walk is given by PSD*dT
* where dT is the time difference in the units of the PSD time argument,
* you can easily compute how a given value will affect the solution.
* For example, a PSD value of 36500 m**2/yr for station coordinates
* will constrain the station position to +-10 meters (one sigma) between
* sessions separated by a day. Specifying stochastic variation of
* any group of parameters is an effective way of absorbing errors due to
* unmodeled behavior, such as the effects of non-gravitational forces
* on satellites, errors in a priori Earth-rotation information, post-
* seismic motion of stations. It is also a useful way of handling
* apparent changes in station position due to changes in instrumentation
* or blunders in measuring antenna heights. Finally, allowing
* stochastic variation of some group of parameters and running a Kalman back
* solution may be used to test the repeatability of the values in a set
* of data, though for most data sets this can be done more efficiently
* by treating each day (h-file) independently and running glred instead
* of globk (see section III.d below).

* Station coordinates and velocities
* ----------------------------------

* Apriori constraints on site positions and velocities are expressed as
* one-standard-deviation uncertainties. If an apr_file command has been
* used then these refer to the values in that file, otherwise they are
* the estimated values found in the global files. The constraints
* may be specified either in cartesian coordinates x, y, z, using the
* command apr_site, or north, east, up, using apr_neu. The units are
* meters for position and meters/year for velocities. In the case
* below, there are no velocity sigmas given, so velocities will not be
* estimated. An efficient way to enter the constraints is to first
* set the default using "all", and then follow with overriding values
* for specific stations.

    apr_neu all      100   100   100   0 0 0
    apr_neu ssss     .01   .01   .05   0 0 0
* Warning: If both apr_site and apr_neu are entered, the a priori sigmas will be combined (added quadratically). This is true even if "all" if used for one of the commands, so be careful.

* To absolutely fix a station (as opposed to heavily constraining it, you can use "F" for the apriori sigma. This will set aside parameter space for the site, but the site position will be given an apriori position uncertainty of zero. Fixing with local coordinates is not recommended since globk works internally it in Cartesian coordinates, and the zero value can lead to (small) negative variances at the end of the solution.

```
 apr_site dddd F F F 0 0 0
```

* To add (random) noise to the coordinates of individual stations, you may use the command
* sig_new <station> <hf code> <NEU sigmas> <start date> <end date>
* where <station> is the leading 4- or or full 8-character site code,
* <hfcode> is string of H-file names to be searched, <NEU sigmas> are the noise sigmas in meters, and the last two entries give the calender dates of the range, in YYYY MM DD HH MM. For example, to add 20 mm of vertical noise to all Auckland (AUCK_) stations between 1 February and 1 March, 1999, use

```
sig_neu auck .0 .0 .02 1999 2 1 0 0 1999 3 1 0 0
```

* Both the H-file name and time span entries are optional. There is a 1-minute (inclusive) tolerance on the time entries. You can apply noise to a group of renamed stations using @[string]; e.g., @_BAD would match all stations renamed to end in _BAD.
* All entries which apply to a station are used (in a variance sum)

* To add Markov (time-dependent) noise to the coordinates of stations, the form is similar to the apr_ commands but with units of m**2./yr. We turn off the Markov process at one station so that the system will have a fixed origin:

```
 mar_site all 36500 36500 36500 0 0 0
 mar_site dddd 0 0 0 0 0 0
 mar_neu eeee 0 0 36500 0 0 0 ! Markov height only at this station.
```

* Be careful not to try estimating velocities for stations when the coordinates have non-neglibile Markov process noise. Although we do not usually input Markov constraints for velocities, this can be done, with the result that the process is assumed to be a random walk in velocity (as for all parameters) and therefore an integrated random walk in position (see the discussion in Herring et al.[1990]).

* Satellite orbital parameters
* ----------------------------------

* Satellite parameters are defined in the same way as in GAMIT, but the units for the initial conditions are different--here meters and millimeters/second. The change in units (from GAMIT) is needed
* because Kalman filters suffer fewer rounding error problems when all
* the units generate similar size numerical values.

```
apr_svs all 200 200 200 20 20 20
apr_rad all 1. 1. .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02
apr_svan all .01 .01 .01
```

* The second token in these commands can be ‘all’ to refer to all
* satellites, or the name of an individual satellite, e.g., prn_01.
* The constraints for non-gravitational parameters (dimensionless) refer
* to the 14 parameters now allowed by GAMIT and must be in the following
* order: DRAD YRAD ZRAD BRAD XRAD DCOS DSIN YCOS YSIN BCOS BSIN.
* XI1SN, X3SN, Z1SN (see gamit/arc/ertorb.f for definitions). Normally,
* you would have used a consistent 3-, 6-, or 9-parameters model, so
* that only subsets of these would be meaningful. For example, for the
* Berne (1994) model (DRAD YRAD BRAD DCOS DSIN YCOS YSIN BCOS BSIN),

```
apr_rad all 1. 1. 0 .02 0 .02 .02 .02 .02 .02 .02 .02
```

* would set direct and y-bias sigmas at 100%, and the b-axis and once-
* per-rev sigmas at 2%. The values for the unused z-axis and x-axis
* parameters are set here to zero but would be ignored by globk
* since they do not appear in the binary h-files. If different
* sets of parameters are used in different solutions, you should set
* realistic sigmas for all 14 parameters. The non-gravitational
* parameter sigmas can also be added to the apr_svs command line
* (after the 6 for position and velocity of the satellite).

* The third set of satellite parameters are for SV antenna offsets and
* have units of meters.

* A priori values constraints for the Initial conditions, radiation
* pressure, and SV antenna offset parameters can be entered on a single
* line as apr_svs, an option that is more feasible with a new feature
* that allows a short cut:

```
apr_svs prn_09 10 10 10 1 1 1 1 0.01R 5A
```

* where the first seven parameters (initial conditions and direct
* radiation pressure are specified explicitly, the “R” appended to the
* next entry indicates that all other radiation pressure parameters are
* to have this constraint (%), and the “A” appended to the last entry
* indicates that all SV antenna offsets are to have this constraint (5m)
* 
* If no apr_svs command is given, the effect is the same as specifying
* zeroes for the a priori constraints; i.e., whatever constraints were
* present in the input h-file will be used and the orbital parameters
* will be suppressed in the output. This approach will produce a
* quicker solution than weakly constraining the orbits (as above) and
* specifying large Markov variations (see below). To suppress the
* orbital output while fixing the orbits (tight constraints), set
* the values to F F F etc.
* 
* For allowing random-walk variation of orbital parameters the units
* are m**2/year for XYZ; (mm/sec)**2/year for Xdot, Ydot, and Zdot,
* (dimless)**2/year for non-gravitational parameters, and m**2/yr for
* SV antenna offsets.
The case above constrains changes in orbital parameters over 1 day to:

- ±1 m for XYZ,
- ±0.1 mm/sec for Xdot, Ydot, and Zdot,
- ±1% for the direct and y-bias non-gravitational parameters,
- ±0.1% for the b-axis bias and once-per-rev parameters
- ±1 cm for SV antenna offsets

Except for the SV antenna offsets, the Markov PSD's are not used across ephemeris boundaries (i.e., where the orbit integration epoch changes. In this case the apriori orbital element sigmas are reimposed. As for a priori constraints, the non-gravitational and SV antenna offset parameters may be set by adding them to the mar_svs command. If initial condition but not radiation-pressure Markov values are set with either the mar_svs or rad_svs commands, globk will issue a warning.

Associated with the mar_svs command is the svs_marf file which allows the Markov process on a particular set of satellites to be experiment dependent. The form of the command is

```
svs_marf <file name>
```

where `<file name>` is the name of a file containing new Markov information satellites (will be used instead of the values given in the mar_svs command.) The format of the file is:

```
```  (days) (units as above)

where Dur is the duration in days over which this alternative set of markov parameters should apply. As many as entries as desired can be put into the file.

The rad_reset command allows you to link radiation parameters across all days in the solution, estimating an average value for each for each satellite from all the days combined in a solution. The default is to estimate separate values, corresponding to each set of initial conditions, but you can force common values by setting

```
rad_reset no
```

This command normally used in conjunction with the Z option of the make_svs command, which forces the direct radiation pressure parameter to 1.0 and all others to zero. If the Z option is not specified, the a priori value for each parameter will be taken from the values on the first h-file read in, and the adjustments will be the average from this value.

The val_svan coman allows you to change the a priori values of the antenna offsets:

```
val_svan <prn/all> <x> <y> <z>
```

where `<x>`, `<y>`, `<z>` are the new offsets in meters. If DEF is used for a numeric value, then the default value (i.e., the value used in...
* GAMIT will be retained; e.g., val_svan prn_13 def def 2.0 would
* change just the Z component to 2 meters.

* Earth rotation parameters
* -----------------------------
* To estimate Earth orientation parameters in the form of UT1 and pole
* position and their rates of change, use the commands

```
apr_wob 100 100 10 10
apr_ut1 100 10
```

* The entries for pole (wob) are x and y, x-dot and y-dot, and for
* axial rotation, UT1 and its rate. Both pole and UT1 have units of
* milli-arcseconds (mas) and mas/day. The need for pole position
* estimates is dictated by how well you know the positions of any
* heavily constrained stations coordinate system defined by the
* a priori Earth rotation tables. Also note that if all orbital elements
* are estimated, then UT1 can be arbitrarily given zero apriori sigma,
* since any UT1 error will be absorbed in the longitudes of the nodes of
* the satellite orbits (though we normally put a non-zero value in order
* to monitor rotations of the orbits).
* The units of random-walk variations of Earth rotation parameters are
* mas**2/yr for offsets and (mas/day)**2/yr for rates. The example
* below allows +-1 mas between sessions separated by one day.

```
mar_wob 365 365 365 365
mar_ut1 365 365
```

* The need for these parameters is determined by how well you think
* your apriori Earth rotation series remains fixed to your system
* of coordinates. The Markov constraints are implemented in such a way
* that the coupling between angles and rates is accounted for; that is
* the constraint applied to rates as a random walk (RW) becomes an
* integrated random walk (IRW) constraint on angles, applied in addition
* to the explicit random walk constraint applied for the angles
* themselves. See the discussion in Herring et al. [1990]. Note that
* in version 5.02 the formulation of the IRW was changed from one used
* in earlier versions, which seemed to couple angles and their rates
* too strongly, to one that is more statistically correct (and closer to
* the one described in Herring et al. [1990]). If you wish to retain
* temporarily, for consistency, the more strongly coupled model, you can
* use the command 'irw_mod old'.

* For global analyses in which you want to extract pole and UT1
* estimates for each day of a multiday analysis (for example, the
* weekly SINEX combinations of the IGS Analysis Centers), you should
* use the mul_pmu command:

```
mul_pmu <number> <spacing> <start> <option>
```

* where <number> is the number of entries to introduce
* <spacing> is the spacing in days between the values
* <start> is the start epoch for the values, entered either as
  a calendar date (year month day hr min) or a GPS
week and day-of-week

* <option> specifies how the values are to be treated:
* IND each day is independent; i.e., the apr_wob and
* apr_ut1 values apply to each day and the mar_wob
* and mar_ut1 values are not used; if omitted,
* Markov values are used
* NOUT ignore the UT1 entries in the input files
* WARN print warning messages for h-file PMU epochs
* that do not fall on the mul_pmu boundaries

Sometimes it is necessary to estimate rotations and rotation rates
* independently of the pole and UT1 parameters. This can occur, for
* example, with SINEX or h-files that have inconsistent EOP and no
* EOP values in their headers (if EOP values are present, globk can
* remove the inconsistency). The command syntax for the the arbitrary
* rotation parameters is

```
apr_rot <xig X> <sig Y> <sig Z> <sig Xrate> <sig Yrate> <sig Zrate>
```

* where the first three entries are for rotations about the X, Y, and Z
* axes in units of mas, and the second three for rate rates in mas/yr.

```
mar_rot <RW X> <RW Y> <RW Z> <IRW X> <IRW Y> <IRW Z> <WN X> <WN Y> <WN Z>
```

* where the first three entries are for the random walk process in units
* of mas**2/yr, the second three for an integrated random walk process
* in units of (mas/yr)**2/yr, and the last three for a white noise
* process in units of mas**2. The white noise values, not available
* with the mar_wob and mar_ut1 commands, allows you to specify a process
* for which the noise level is not dependent on the spacing of the
* observations.

Translation and change of scale
* -------------------------------

* In addition to estimating a change in orientation of your network
* (though the Earth orientation parameters), you can allow a constant
* or time-varying translation (for a global network a change in center-
* of mass) and/or scale.

```
apr_tran .01 .01 .01 .1 .1 .1
```

* where the first three values are the sigmas in x, y, and z, and the
* last three sigmas of their rates in units of meters and meter/yr.

```
apr_scale 1. 1..
```

* where the units are parts per billion (ppb) and ppb/yr.

Stochastic variation may be specified for both translation and scale:

```
mar_tran 3.65 3.65 3.65 0 0 0
mar_scale 365 0
```

* in units of m**2/yr, (m/yr)**2/yr, ppb**2/yr, and (ppb/yr)**2/yr,
* respectively. The example show allows for 10 cm/day translation
* and 1 ppb/day change in scale.

* Correcting models
* ------------------

* In principle a number of effects omitted in the original processing
* can be corrected at the globk stage, provided their signature can be
* modeled by changes in the quasi-observations. Thus far, only the pole
* tide, which has been omitted from much of the GAMIT processing, has
* been added to globk To apply the pole tide
* in globk, use the command

    app_ptid < list of h-file codes / ALL >

* where < list of h-file codes > is a list of strings that should appear
* in the h-file name for any data to which you wish the pole tide
* applied. For GAMIT-produced h-files, you may safely include this
* command all the time since globk will detect from the headers whether
* or not the pole tide was applied in the phase processing and apply
*
* Another "model" change that can be made is a station's antenna offset
* from the monument. This change, accomplished along with corrections
* to other receiver and antenna information, is performed by utility
* hfupd by reading station.info (see Section 5.10).

* Defining earthquakes and renaming stations
* -------------------------------------------

* The eq_file command given at the beginning of the command file
* includes a series of commands that tell globk how to handle
* earthquakes or other discontinuities in the observation series.
* The eq_file command must be read first since the commands within
* it affect the names of the stations that will be used in interpreting
* subsequent commands. In this file is also a general command for
* renaming stations (useful for undoing htoh runs used in the past to
* account for earthquakes).
*
* Within the eq_file the following commands may be used: (They can NOT
* be used in the globk command file). An example of the eq_file is
* given below. In the standard version (parameter max_eq in
* kalman_param.h), parameters for 128 earthquakes can be specified in a
* single run.

    eq_def <Code> <Lat> <Long> <Radius> <Depth> <epoch>

* This command defines the earthquake. <Code> is a two letter code which
* is used (optionally) in renaming sites and identifying this earthquake
* in subsequent commands. The code cannot be the same as the last two
* (7th and 8th) letters of any station affected by the earthquake.
* Specifically PS can never be used as a code since _GPS forms the last
* four characters of all GPS stations. This command must be issued
* BEFORE others referring to the Earthquake and the same code may not be
* used twice. <Lat> and <Long> are the geodetic latitude and longitude
* of the center of rupture plane (approximately) in decimal degrees for
* the WGS84 ellipsoid. <Radius> is the radius in km over which the
* Earthquake is*assumed to have some effect. Radii are computed as the
chord distance from the lat, long and depth of the Earthquake to the
station. For an earthquake to have an effect, the radius must be
greater than the depth. <Depth> is the "depth" in km to the earthquake.
No station will (in general) be closer to the earthquake than its
depth. The depth is the negative of the ellipsoid height of the
Earthquake (i.e., the value is positive). The Depth is used for scaling
the spatially dependent quantities discussed below. <epoch> is the
time of the earthquake, entered as year month day hour min (all separ-
ated by blanks. The experiment epoch of the data is used to test if
the data are before or after the earthquake. (For one-day hfiles, the
experiment epoch is the middle of the data; for combined global files
it is usually the middle of the last day of data in the combined file.
If srt_dir -1 was used in the globk run generating the combined file,
the experiment epoch will be at the start of the data set.)

   eq_renam <Code>

   This command tells globk to rename the stations affected by the earth-
quake by replacing the last two letters of the station name by the
code for the Earthquake. This command can be used in conjunction with
the stochastic options discussed below. For generating apriori
coordinate files, this is the preferred option. If no apriori
coordinate and velocity is in the apr_file for globk for the renamed
station, the values for the original station will be used.

   eq_cosei <Code> <Static Sigmas NEU> <Spatially dependent Sigmas NEU>

   The command specifies the stochastic treatment of sites affected by
the earthquake. If the command is not issued there will be no
stochastic variations at the time of the Earthquake. If the sites are
renamed then this command is not needed, but can still be used to
achieve the effect discussed below. <Code> is the 2-character code
for the earthquake (to get the parameters in the eq_def command.
<Static Sigmas NEU> are three values separated by spaces that give the
standard deviation of the displacements (in meters) expected at the
time of the earthquake (i.e., apriori standard deviation of the
coseismic displacements). These values will be applied to all sites.
<Spatially dependent Sigmas NEU> are three values separated by spaces
that give the spatially dependent standard deviations. The standard
deviation of a site is computed using \( \text{Sig} = \text{SigSpatial} \times (\text{depth/dist})^2 \)
where Sig is the computed sigma, SigSpatial is the sigma given in the
command, depth is the depth of the earthquake, and dist is the
distance the station is from the earthquake. The units on all sigmas
are meters.

   It is important to consider the consequences when the rename and
coseismic features are used together. In this case, the covariance
matrix elements and solution for the station name before the
earthquake (which itself may have been renamed from previous
earthquakes) are copied to the new station name before the coseismic
standard deviations are added. The coseismic sigmas are not applied
to the old station name. The apriori coordinates and velocities of
the two station names should be the same unless you are want to con-
strain the incremental adjustment, to a dislocation model for example.
If the renamed station does not appear in the apriori file, then globk
will automatically do this. For all sites used only after an earth-
quake,* a **NOTE** may be printed during the globk run saying that the
original station name of a renamed site could not be found. The note
* can be ignored if you know this to be the case.

```
eq_pre <Code> <dur> <Static Markov NEU> <Spatially dependent Markov NEU>
```

* This command allows the specification of random walk parameters to be
  * applied before the earthquake. <Code> is the 2-character earthquake
  * code. <dur> is the number of days before the earthquake to start the
  * process noise. The estimates will be output for up to 2 days before
  * the start of the process when a back solution is run.
  * <Static Markov NEU> are three values that give the random walk process
  * noise (mm^2/day) in North, East and Up to be applied equally to all
  * stations. <Spatially dependent Markov NEU> are three values that give
  * the process noise parameters in North, East and Up to be applied in a
  * spatially dependent fashion. They have the same spatial dependence as
  * the coseismic displacements except squared since the variance is
  * specified in the process noise.) Note that when the rename feature is
  * the preseismic process noise is not applied to the new station name
  * (i.e., the station name used after the earthquake).

```
eq_post <Code> <dur> <Static Markov NEU> <Spatially dependent Markov NEU>
```

* This command allows the specification of random walk parameters to be
  * applied after the earthquake. The command and specifications are
  * exactly the same as eq_pre except this process is applied after the
  * earthquake. If the rename option is used then the process noise will
  * not be applied to the old station name.

```
rename <Orig site name> <New site name> [hfile code] [epoch range] [Position change]
```

* This command, which also goes in the *earthquake file*, NOT the globk
  * command file, simply renames stations in the solution. It is useful
  * for making binary h-files from different institutions or time periods
  * compatible or removing stations from the solution. Renaming a station
  * to end in _XCL will cause it to be automatically removed.
  * <Orig Site name>is the site name that appears in the binary h-files;
  * and <New site name> is the name you wish to use in the current
  * solution. It should not conflict other names in the binary h-files.
  * The following arguments are optional:
  * [hfile code] is a string that must appear in the name of
  * the h-file for the rename to be applied. This argument may be omitted
  * since globk can distinguish whether the third argument is a string or
  * a number (epoch range); however, you cannot use a string that is
  * entirely numerical. <epoch range> is range of time over which the
  * rename will be applied, specified as a pair of year month day hour min
  * values (all separated by spaces). Any hfile in which the start date
  * is after the first date and the end date in before the second date
  * given will have the station renamed. <Position change> is the change
  * in position to accompany the name change. It is given in either XYZ
  * or NEU (three values) followed by a type declaration (XYZ or NEU). If
  * no type is given, XYZ is assumed. Units are meters and the change
  * should move the station from the original position to the new position.
  * North, East and Up (NEU) are defined as North along (the ellipsoidal)
  * meridian direction at the apriori coordinate of the new site name,
  * East along the East longitude direction, and ellipsoidal height. The
  * rotation matrix is defined by these directions and the NEU are rotated
  * to XYZ using this rotation matrix. NOTE: The renames are applied
  * before any earthquake processing, so names generated from earthquakes
  * use the new station name.
Example of earthquakes and renames

The following renames undo the htoh runs for Landers.
rename mojave1b mojave12
rename dslb_gps ds10_gps
rename gold_gps ds10_gps
rename jplb_gps jplm_gps
rename sioc_gps sio2_gps
rename vndo_gps vndp_gps
rename pinb_gps pin1_gps

Example of moving a GPS site to a VLBI site location
rename aron_gps algopark 92 5 1 0 0 92 8 30 0 0 -94.7630 -61.0170 -6.6660 XYZ

Example to show a height change. The height change is the dual-frequency (LC) combination. (This correction would move from the phase center to the ground mark, i.e., zero height was used in the original processing.)
rename hart_gps hart_gps 90 1 1 0 0 92 8 30 0 0 0.0 0.0 -9.8013 NEU

Example to allow heights to be estimated independently for a station in the SOPAC and MIT solutions (horizontal coordinates to be equated)
rename math_gps math_aps igs 93 4 14 0 0 94 11 10 00
rename math_gps math_aps pgga 93 4 14 0 0 94 11 10 00

The Landers earthquake. Here are using the spatially dependent versions. The coseismic displacement sigma 100 km from the earthquake origin is 72 mm horizontal and 28 mm vertical in this case. For the Markov process the values correspond to 1.6 mm^2/day for all three components. (The parameters here were computed approximately from dislocation models of Landers). Landers/Big Bear has a moment of 1x10^20 N-m, and Ms 7.5)

eq_def    LA  34.45 -116.50  500   20  92 6 28 12 0
eq_renam  LA
eq_cosei  LA     0.000 0.000 0.000     1.8    1.8    0.7
eq_pre    LA  30 0.000 0.000 0.000  1000.0 1000.0 1000.0
eq_post   LA  30 0.000 0.000 0.000  1000.0 1000.0 1000.0

Other earthquakes could be defined here. If pre-seismic or post-seismic process noise overlap from different earthquakes then both sets of process noise are added.

Running glorg from within globk or glorg

A new feature has been added which allows glorg to be run directly from within globk. The feature is invoked using the org_cmd command (given below) which gives the name of glorg command file. The following commands are used with this feature:

org_cmd <glorg command file name>

where <glorg command file name> is the name of the command file with the glorg commands in it (see section III.f or online glorg.hlp).
org_opt  <options list>

* where <options list> is the list of options to control the glorg output. The most commonly used are BLEN--output baseline lengths and components, BRAT--output baseline rates of the change components, PSUM--Position summary, VSUM--Velocity summary, CMDS--globk command file summary.

org_out  <File name>

* where <File name> is the name of the output file. If this is not given then the output goes to file name generated by replacing the characters after the last period (.) in the print file name with 'org'. If there is no last period, then.org is appended.
3.2 glorg command file

Glorg is the origin (translation and rotation) fixing program for the data analysis. It allows the reference frame of the solution to be specified after all of the data have been combined by globk (with loose constraints). Thus, many realizations of the frame may be tested quickly by fixing different combinations of coordinates and velocities. Translation, rotation, and scale may be estimated by a minimization of the deviations between horizontal positions and velocities given in the apriori station position file. Glorg also allows you impose other constraints such as forcing the velocity adjustments of nearby stations to be equal. The chi-square increment from each constraint is shown in the output file so that you may evaluate its affect on the solution. The apr_file used for glorg need not be the one used for globk. (In this way, for example, you could run globk with velocities which represent your best estimates, but then display differences to a standard plate motion model.) Glorg may be invoked from within globk/glred, as is typically done to generate daily solutions to examine repeatability, or executed as a separate program following combination of data from many days or years. Examples of each of these applications are given in Section 3.4.

The run-string and commands used are documented below. A current version of this documentation may be found in the on-line help for glorg.

GLORG: Origin resolution program for the GLOBK.

Runstring:

% glorg <output> <options> <command_file> <com_file>

where <output> is the name of the output file (may be 6 for output to current window.

<options> are the print options for the output file, specified by the same 4-character codes as for globk except that there is an additional option SDET that allows output of the details of the stabilization calculations in glorg. If glorg is invoked from within globk, the options are given by the org_opt command in the globk command file. If glorg is run alone, they must appear in the command line separated by colons or equal signs; e.g. glorg test.org blen:psum glorg.cmd test.com

<command file> is the name of the command file for glorg.

<com_file> is the name of globk common file used in the analysis.

The commands are:

APR_FILE  Gives the name of the new apriori position and velocity file. The command may be issued multiple times, with the last values read for a station taking precedence

EQUATE    Forces adjustments to parameters to be made equal. The parameters may be listed by number

        equate n1 n2 n3 n4

in which case the numbers must be in ascending order; or for station names, the station-code and keywords for the parameters may be used,
equate west_gps xdot hays_gps xdot.

The acceptable parameter names are xpos, ypos, zpos, npos, epos, upos for position and xdot, ydot, zdot, ndot, edot, udot for velocities. (Local_eq determines if global cartesian or local coordinates will be used for equates. If a station name is given which is not in the solution then error messages warning about decoding errors will be printed. These may be ignored.

CONSTRA Similar to EQUATE except that the standard deviation of the constraint is specified:

    constrai <sigma> n1 n2 ..

where sigma is in units of the parameters.

FORCE Will force the adjustment to a parameter to a specific values. Forms are similar to equate in that parameter numbers or station name and component may be used:

    force n1 <value> <sigma>
    force west_gps xdot value sigma

where n1 is a parameter number, value is the value of the adjustment to which this parameter is to be forced, and sigma is the constraint level in mm.

EQ_DIST Allows equates to be specified for all stations within the set distance.

    eq_dist <dist (m)> <equate type>

where equate type is is defined under equate. e.g.,

    eq_dist 2000 ndot

equates the north velocity adjustments for all stations within 2 km of each other.

UNEQUATE Is used to override the equates set with eq_dist. The form is same as equate, and any parameter specified in the equate will be removed from the equate lists.

    unequate gras_085 ndot gras_085 edot

would remove gras_085 north and east velocity parameters from any from any equates in which they appeared.

LOCAL_EQ Used in conjunction with EQUATE and FORCE. The default is now to apply these constraints in local (NEU) coordinates, but XYZ may be used by setting LOCAL_EQ N. Command may be issued only once and applies to all forces and equates.

POS_ORG Sets the parameters to be used in setting the origin, rotation and scale of the coordinate system. Arguments are the parameters to be used: viz., xtran, ytran and ztran for translation; xrot, yrot,
and zrot for rotations; and scale for scale factor. E.g.,

    pos_org xrot yrot zrot

would only allow rotations in setting the coordinate system.
Used with use_site to set which stations are used in the
definition.

RATE_ORG    Similar to pos_org but for rates. Same arguments
may be used.

COND_SIG    Sigmas to be assigned to the translation, rotation,
and scale parameters in pos_org and rate_org commands.
Six values are specified: translation sigma (m),
rotation sigma (mas), scale sigma (ppb), translation
rate (m/yr), rotation rate (mas/yr) and scale rate
(ppb/yr). When the parameters are given, the origin
of the system to defined to only within these sigmas.
The command is useful for minimizing numerical
stability problems and/or have the site position and
rate sigmas account for uncertainties in realizing the
reference frame. E.g.,

    cond_sig 0.01 0.1 0.1  0.01 0.1 0.1

sets the origin to 10 mm, orientation to 0.1 mas, and
scale to 0.1 ppb, the origin rates are 10 mm/yr,
0.1 mas/yr and 0.1 ppb/yr.

STAB_SITE   List of candidate stations to be used in the origin definition.
Default is ALL so usually start with with CLEAR to avoid using bad
or weak stations or set the tolerances sufficiently tight with
the cnd_hgtv, stab_min, and stab_ite commands to have these elimin-
ated automatically. Stab_site may be invoked multiple times. It
was called use_site until version 5.01 and may still be invoked
with this name.

CND_HGTV    Used to determine from the height sigmas which of the stations
in the stab_site list are retained defining the reference frame.
Four values are given. The first two are the variance factors
applied to heights and height rates relative to the horizontal
components in estimating the origin position and velocity. The
second two set limits on the sigmas of the height and height rates
of station to be used. They are meant to exclude stations with
large uncertainties and are specified in terms of heights because
an indeterminate reference frame will cause the uncertainties of
the horizontal coordinates to be artificially large. Specifically
they set a limit on the following ratio: \((h-hmed)/(hmed-hbest)\)
where \(h\) is the variance of the height or height rate of a station,
hmed is the median variance for all stations used for the origin
definition, and hbest is the best (smallest) variance of the stat-
ions being used. Default values of cnd_hgtv are 10. 10. 3. 3.. An
alternative way to apply the height-sigma criteria is now avail-
able with the stab_min command described below.

STAB_ITE    Sets characteristics of coordinate system stabalization.
The command format is:
stab_ite [# iterations] [Site Relative weight] [n-sigma]

[# iterations] is the number of iterations. The default is 2, which works fine in well behaved cases but the iterations are quick so allowing 4, e.g., is usually safer. [Site Relative weight] indicates how the site sigmas are used in stabilization. If it is set to 0.0, all sites are weighted equally throughout all interations of the stabilization process; if set to 1.0, the weight is determined by the coordinate sigmas in the previous iteration; if set to an intermediate value, say 0.5 (default), the coordinate sigmas from the previous iteration are allowed only 50% weight (vs constant). The number of iterations must be > 1 for this feature to be invoked. In this computation, as in the overall stabilization, height sigmas are downweighted with respect to the horizontal sigmas by CND_HGTV (1st two argument [n-sigma] is an editing condition to eliminate sites that are discordant with the aprioris. (Iterations must be greater than 1 for this to be used). The value applies to the ratio of the root-sum-square of the north, east, up residual (calculated with up down weighted) to the site's relative weight (displayed in the output) times the overall rms of the stabilization fit (also displayed). The default is 4.0.

STAB_MIN Allows the user to set the minimum values for the cnd_hgtv limits on heights sigmas of sites to be used in the stabilization, and on the minimum RMS to be used in postfit rms editing. The command format is:

```
stab_min [dHsig min pos] [Min RMS pos] [dHsig min rates] [Min RMS rat

[dHsig min pos] is minimum difference between best and median height sigma for position (default 0.005 m)
[Min RMS pos] is minimum postfit RMS in position to be used.
(default 0.003 m)
[dHsig min rates] is same as [dHsig min pos] except for rates
(default 0.005 mm/yr)
[Min RMS rate] is same as [Min RMS pos] except for rates
(default 0.003 m/yr).
```

If only two arguments are given then these values will be used for both position and velocity. Example:

```
stab_min 0.005 0.003 0.005 0.003
```

FIRST_EQ Sets mode in which the equates and forces will be applied before the origin fixing constraints (as discussed above) are applied. No arguments.

PLATE Allows Euler poles to estimated using a selection of stations. The velocity residuals in the glorg output are then given relative to these new poles of rotation.

```
plate <plate name> <...list of stations ...>
```

where <plate name> is the 8 character name of the plate and the list of stations is the list of station whose velocities will be used to determine the Euler pole. The command may be issued multiple times with the same plate name to build a complete list of stations and to
specify different plates, but a station should not be named multiple times). The estimation is done for all plates simultaneously using the full velocity covariance matrix.

3.3 Defining a reference frame for the analysis

*Globk* offers a variety of tools and approaches for defining the reference frame used to estimate positions and velocities—so many, in fact, that users have been easily confused about which to employ. In this section we offer descriptions and prescriptions of how to use constraints on station coordinates, orbital parameters, and Earth orientation values to define the frame consistently for global and regional analyses.

The most general and robust method for defining the reference frame is to include in your analysis h-files from processing of a large global network. For GAMIT users, these would normally be the *igs1, igs2,* and *igs3* h-files from the SOPAC global analysis and would include station coordinates, orbital parameters, and Earth orientation parameters (EOPs). If the orbits (T-file) for your regional analysis were generated using the same models (i.e., same version of *arc*), then combining the global and regional h-files for the same day provides a rigorous estimate of the orbital motion and Earth orientation using both the global and regional data.

For regional analyses, more care must be exercised in the command files because of the interaction between the EOPs, orbits, and station coordinates and velocities. Strictly, the a priori coordinate file, the a priori EOP (*inpmu*) file, and the orbits form an integral set which must be self-consistent. The only frame in which this is directly possible is the NUVEL-1A No-net-rotation (NNR) frame as realized by the ITRF system used by the IERS for EOP and IGS for orbits. With this type of analysis, discontinuities in time series can be expected whenever new ITRF frames are introduced though they should now be centimeter-level globally and often negligible regionally. The orbit interaction is two-fold. Since the IGS orbits are given in an Earth fixed frame, the same EOPs must be used to transform these orbits to inertial space as are used in the *globk* analysis (for GAMIT users, by program *ngstot* invoked by script *sh_sp3fit*). Also, the nodes of the orbits, if tightly constrained, define an origin for UT1 values and therefore the UT1 tables and longitudes of the sites must be self-consistent. The level of consistency can be relaxed a bit if some process noise is allowed in the representation of the EOPs. If the systems are fully consistent then process noise should not be needed.

**Station constraints**

Whether you have combined global and regional data in your own analysis (estimating orbital parameters) or are analyzing global SINEX files (without orbits) from an IGS Analysis Center, the best approach for an analysis with global data included is to use the features of *glorg* that allow you to define the reference frame by minimizing the departure from a priori values of the positions and/or velocities of a set of well determined stations, usually globally distributed but for some applications concentrated within the region of interest. To accomplish this you should include in your *globk* or *glred* command file the name of the *glorg* command file (e.g., *org_cmd glorg.cmd*) which includes the following commands:

* Define the frame using the 13 pre-96 IGS core stations
  stab_site clear onsa_gps kosg_gps wtzr_gps trom_gps yelling_gps gold_gps stab_site kokb_gps tidb_gps yar1_gps algo_gps madr_gps hart_gps sant_gps
* Estimate orientation and translations in position and velocity

\begin{verbatim}
pos_org xrot yrot zrot xtran ytran ztran
rate_org xrot yrot zrot xtran ytran ztran
\end{verbatim}

The stations used for reference frame definition ("stabilization", in glorg parlance) for this case are the IGS stations with the longest history and designated "core" prior to 1997. For an analysis that includes substantial data from the last 2–3 years (along with earlier data), a better list would include all 50 of the IGS stations well determined in ITRF97. With glorg 4.04 the iterated scheme for stabilization will eliminate automatically stations for which the horizontal coordinates don't fit well, so you do not need to be as careful as before to choose exactly the right set of stations for stab_site (see the example of glorg output in Section 3.5). General criteria for evaluating the quality of the stabilization include the rms of the fit (5-10 mm in position, 1–2 mm/yr in velocity is typical using the default downweighting of heights by a factor of 10) and number and distribution of stations remaining after the automatic editing (at least 5, ideally 20 or more for robustness in global networks).

Strictly speaking, global GPS measurements are sensitive to the Earth's center of mass (i.e., the frame is not free to translate), suggesting that one should use only the orientation parameters (xrot yrot zrot) in defining the origin. The uncertainty in center-of-mass, however, is larger than for relative coordinates, and estimating a translation may reduce the sensitivity of coordinate estimates to deficiencies in modeling the orbits of the GPS satellites. You can account for these modeling deficiencies by estimating a translation of the frame for each day, using the apr_tran command in glred or the apr_tran and mar_tran commands in globk. When these commands are used with loose constraints, the baseline lengths and their sigmas will be unaffected by the glorg origin constraint. If the apr_tran and mar_tran commands are not included, then the baseline lengths and sigmas will be affected by glorg because the origin of the coordinate system is being forced to a specific location (See the Appendix C of Dong et al. [1998] for an example). Similarly, GPS measurements are sensitive to scale but mismodeling of the antenna phase-center variations, the troposphere and/or orbital motion may introduce errors that can be effectively removed by estimating a scale change daily or for a longer span using the apr_scale and mar_scale parameters with loose constraints in glred or globk. If scale is not estimated explicitly in glred or globk, then the pos_org scale option in glorg will introduce more than just a simple scale change, so it is important in the case of scale to be consistent: use apr_scale in globk and pos_org scale in glorg or omit both. It not clear at this time whether more accurate results are generated when translations and scale changes are estimated. Our current practice is not to estimate a daily translation or scale change when combining daily h-files for a survey. Sometimes, but not usually, we allow a translation when combining h-files from several surveys to estimate velocities. It is relatively easy at this stage to perform the analysis both ways and assess the results.

For analyses in which only regional data are included, the stability of the solution can be maintained by applying a priori constraints on the orbits and Earth orientation parameters (EOPs), but you can still define a local, regional, or plate specific frame using glorg stabilization. The procedures to use for both time series (repeatabilities) and estimating velocities are described in Section 3.4.

It is important to remember that a reference frame for a velocity field may be defined independently of the coordinate frame; that is, the quality of the velocity stabilization in glorg can be excellent even if good a priori positions are not available for many of the stations. This also means that you have considerable freedom to choose the reference frame for your velocity estimates in a way that makes the most sense for the goals of your analysis. For example, if you want the most robust geodetic solution to compare with
estimates by other analysts, the no-net-rotation frame of ITRF97 would be the logical choice. With a good data set (e.g. the SOPAC global analyses) you can expect to obtain an rms fit of horizontal components for the IGS core stations at the level of 1 mm/yr. If, on the other hand, you are studying deformation within or around a plate or crustal block, you can include in your stabilization list only stations within the non-deforming region of the plate or block, and create an a priori file in which the velocities of these stations are set to zero (see Kogan et al., Geophys. Res. Lett., 27, 2041 [2000]; McClusky et al., J. Geophys. Res., 105, 5695 [2000]).

An alternative approach to defining the global frame is to put specific and realistic constraints on the a priori positions and/or velocities of a subset of stations using the apr_neu commands of globk or glred. This approach has the advantage of allowing you to vary the weights given to individual stations but the disadvantage of allowing errors in one of the constrained stations (from either the a priori coordinates or the input data) to map into the estimates of the other stations and distort the frame. When the number of stations used is large, the generalized constraints of glorg usually provide a more consistent approach since different realizations of the frame are related simply by rotation and translation, with no internal distortion. In using finite constraints, you want to constrain the translation of your network with respect to the satellite constellation only at the level necessary to avoid inflating the uncertainties in relative positions; e.g., if your network is 100 km in extent and you expect the observations to determine baselines with uncertainties of 1 mm (10 parts per billion [ppb]), you need to constrain the coordinates of one station at the level of 20 cm (10 ppb of 20,000 km, the satellites' altitude). You can determine the appropriate constraint empirically by starting with a small value and increasing it until your baseline uncertainties begin to increase and chi-square no longer decreases, or until you reach a value that you are sure is safe given your a priori knowledge of the station's coordinates.

**Orbital constraints**

If you have not included in your analysis h-files from a global network of stations, then you need to define the reference frame, at least in part, using constraints on the GPS satellite orbits obtained from a global analysis elsewhere. This approach is less rigorous than performing the entire solution yourself, but with current IGS orbits introduces negligible error for small regional networks. With older data, however, discontinuities can arise because the orbits were determined in a different Earth fixed frame. Specifically, ITRF93 is not a NNR frame so there are rotational differences (of order 0.5 mas/yr) between the ITRF93 and later frames.

The typical accuracy of the IGS combined orbits is 2–3 ppb, implying that constraints at the level of 10 cm in orbital position and .01 mm/s in velocity are appropriately conservative; non-gravitational force parameters may be fixed or very tightly constrained:

```
apr_svs all .1 .1 .1 .01 .01 .01
apr_rad all F F F F F F F F F
```

Once the orbital constraints are applied by globk in combining daily h-files into a single h-file for the survey, subsequent runs, (e.g., to combine daily solutions into longer spans) can omit mention of the orbits, thereby maintaining the orbital constraint through the station-coordinate and EOP estimates and covariances but saving the storage overhead required to carry the orbital parameters explicitly.
If you do have global h-files in your analysis and are defining your frame via station constraints, then the orbital parameters should be kept loose whenever they are mentioned in the command files:

```
apr_svs all 100 100 100 10 10 10
apr_rad all 1. 1. .02 .02 .02 .02 .02 .02 .02 .02 .02
```

**Earth orientation constraints**

The treatment of the Earth rotation parameters (EOPs) through the `apr_wob`, `mar_wob`, `apr_ut1`, `mar_ut1` and the `in_pmu` commands also depends on whether you have data from a global network or only a small region. For global analyses, the EOPs are usually left relatively unconstrained because most of the information about polar motion/UT1 comes from the global data themselves. For regional analyses you would normally want to constrain the EOPs, thus defining the orientation of the network by the polar motion/UT1 tables input to `globk`.

For global analyses you should provide `glred` or `globk` with only weak constraints for polar motion and UT1 (100 mas in orientation and 10 mas/day in its rate of change):

```
apr_wob 100 100 10 10 0 0 0 0
apr_ut1 100 10 0 0 0 0
```

for `glred`, and these plus

```
mar_wob 36500 36500 365 365 0 0 0 0
mar_ut1 36500 365 0 0 0 0
```

for `globk` combinations of data from more than one day. In the case of a global analysis, the accuracy of the priori values of EOP is not critical, but you should use an `in_pmu` table to ensure that the estimates from more than one h-file from the same day (e.g., global h-files from SOPAC combined with a regional h-file generated locally) refer to a common set of a priori values. If the GPS satellite orbits are loosely constrained then the first argument for `apr_ut1` can be set to a small number (e.g., 0.01 mas) or fixed because any UT1 errors will absorbed in the nodes of the satellites. However, if you are not interested in comparing orbits generated with similar orientation constraints, there is nothing wrong with leaving UT1 free as shown above; this is our recommendation so as to avoid hidden and potentially confusing constraints in h-files that are expected to be "loose". When running `globk` (rather than `glred`) for multiday solutions, you must also specify a loose Markov process to allow the EOPs to change with time. The following values allow 10 mas/day and 1 (mas/day)/day (actual units are mas²/yr and [mas/day]²/yr)

```
apr_ut1 100 10 0 0 0 0
mar_wob 36500 36500 365 365 0 0 0 0
mar_ut1 36500 365 0 0 0 0
```

For regional analyses with tight constraints on orbits and EOPs, it is important that you perform the analysis in `globk` with a priori values of EOPs that are consistent with those used to produce the orbits. Fortunately, the script `sh_sp3_fit` which generates a GAMIT orbit from an external sp3 file estimates terrestrial rotation parameters (x- and y- pole position), so that if you use the same EOP tables in GAMIT and GLOBK, any inconsistencies are accounted for; that is, you may use IERS Bulletin A or B EOP tables with an IGS orbit without causing a problem. The `apr_wob`, `apr_ut1`, `mar_wob`, and `mar_ut1` values should be consistent with the uncertainties of the `in_pmu` file. For the
IGS polar motion tables, you should set the apriori values to 0.25 mas, 0.1 mas/day, and
the Markov values to similar variations per day (units are [mas/day]**2/yr):

```
apr_wob .25 .25 .1 .1 0 0 0 0
apr_ut1 .25 .1 0 0 0 0
mar_wob 22.8 22.8 3.65 3.65 0 0 0 0
mar_ut1 22.8 3.65 0 0 0 0
```

### 3.4 Examples for GPS analysis

Although quasi-observations from a variety of geodetic measurements can be analyzed
by *globk*, by far the most common use is for the combination of solution files from GPS
surveys to estimate station coordinates and velocities. In this section we present
examples of the *glred*, *globk*, and *glorg* runs needed to obtain a successful analysis. The
most important files and control structures used to drive the software are included in
simple form, with reference to Sections 3.1 and 3.2 for details. For the most current
eamples of these files, see the .cmd and run_ files in the /templates directory.

**Testing coordinate repeatabilities**

The first step in GPS post-processing is usually to generate a time series of station
coordinates using *glred* to identify and remove any surveys or stations which are outliers.
For a global analysis, the reference frame may be constrained on each day using in *glorg*
a stabilization list that includes a reliable set of IGS stations. For a regional analysis in
which you include in *globk* only a few IGS stations, obtaining the best time series usually
requires an interactive process. First you generate time series (with *glred*) using the IGS
stations to define the frame. Then remove obvious outliers and perform a combined
(*globk*) solution to obtain a consistent set of coordinates for all of the stations. Finally,
run *glred* again, this time using all of the stations in the *glorg* stabilization. This
procedure effectively defines a regional frame of reference, allowing you to remove
common-mode errors without choosing a single reference station.

For a global analysis the .gdl file will have the form

```
h9609061159_igs1.glr 1.0 +
h9609061159_igs2.glr 1.0 +
h9609061159_emed96.glx 1.0
h9609071159_igs1.glr 1.0 +
h9609071159_igs2.glr 1.0 +
h9609071159_emed96.glx 1.0
```

where the h-file names for each day indicate the two global subnetworks analyzed by
SOPAC and an h-file from an analysis of regional data from the 1996 Eastern
Mediterranean survey. *Glred* treats each input h-file independently, but adding the +
symbol to the first two of each triplet of h-files for each day forces the parameters to be
the same for the three solutions, thus tying together the orbital and Earth orientation
parameters, as well as any common stations, from the global and regional solutions. The
number following the h-file name is a variance factor (relative weight) for the file.

Then run *glred*
with the command file

* Globk command file for daily repeatabilities and combination

* Required files (usually temporary)
  make_svs ../tables/sat.apr
  com_file globk_rep.com
  srt_file globk_rep.srt
  sol_file globk_rep.sol
* Optional additional command file
  eq_file rename.eq
*
* A priori station coordinates and Earth orientation table
  apr_file ../tables/emed96.apr
  apr_file /ftp/pub/gps/updates/sites/itrf96.apr
  in_pmu /ftp/pub/gps/updates/tables/pmu.bull_b
*
* Input data filter - chi2 and a.p. tolerances high to pass most data
  max_chii 20. 10000. 10000
*
* Commands to estimate parameters
  apr_neu all 20 20 20.0 0 0
  apr_svs all 100 100 100 10 10 10 1 1 .02 .02 .02 .02 .02 .02 .02 .02 .02
  apr_wob 100 100 10 10 0 0 0 0
  apr_ut1 100 10 0 0 0 0
*
* Print options - minimal for globk since using glorg output
  prt_opt GDLF
*
* glorg command file, print options, and output file
  org_cmd glorg_rep.cmd
  org_opt BLEN CMDS PSUM
  org_out globk_rep.org

Execution of glred with this command file will generate a loose solution, recorded in emed96.prt, and will invoke glorg to generate a constrained solution, recorded in emed96.org. The glorg command file (glorg.cmd) will look something like the following:

* Globk command file for daily repeatabilities and combination

* A priori station coordinates
  apr_file ../tables/emed96.apr
  apr_file /ftp/pub/gps/updates/sites/itrf96.apr

* Use IGS core minus hart and sant
  stab_site clear onsa_gps kosg_gps wtzh_gps trom_gps yell_gps gold_gps
  stab_site kokb_gps tidb_gps yar1_gps algo_gps madr_gps

* Estimate orientation and translation
  pos_org xtran ytran ztran xrot yrot zrot

In the glorg command file, we have specified that the reference frame is to be defined by minimizing the position deviations of 11 IGS core stations (Hartebeesthoek and Santiago
are omitted because of poor data during this period) while estimating a translation and orientation.

If you have a small regional network and want to maintain the orientation of the reference frame through the IGS orbit and IERS Earth orientation values, without introducing global h-files or tracking data, the bottom of the glred command file would look like the following:

* Commands to estimate parameters
  apr_neu  all 20 20 20.0 0 0
  apr_svs  all .1 .1 .1 .01 .01 .01 F F F F F F F F F
  apr_wob .25 .25 0 0 0 0 0
  apr_ut1 .25 0 0 0 0
*
* Print options
  prt_opt BLEN CMDS PSUM

and the glorg stab_site command for the initial run might contain only 3–6 stations whose coordinates are well known a priori. If there are only a few stabilization stations, and/or the spatial scale of the network is small, then you should estimate only translation parameters in glorg:

* Estimate translation only
  pos_org xtran ytran ztran

After running glred, you can plot the time series using the scripts described at the end of this section. Then you would remove problematic data, either by renaming the station for a particular span (e.g., rename SSSS_GPS SSSS_XCL in the eq_rename file) or commenting out (with #) the h-file in the gdl file. In the case of a regional analysis (with or without the inclusion of the global h-files), the next step is to run globk to obtain a self-consistent set of coordinates for all the stations. For this run, use the same command file as for the initial glred run, except that you need to allow for time-changes in the EOP values:

* Markov EOP for global analysis
  x mar_wob  36500 36500 365 365 0 0 0 0
  x mar_ut1  36500 365 0 0 0 0
* Markov EOP for regional analysis
  mar_wob  22.8 22.8 3.65 3.65 0 0 0 0
  mar_ut1  22.8 3.65 0 0 0 0

If time span is longer than a single survey, you may also need to estimate a velocity for each of the stations:

  apr_neu  all 20 20 20 1 1 1

After inspecting the globk run for consistency (chi-square values in the log file and rms of the glorg stabilization), you should now extract the coordinates for a new apr file from the glorg print file using grep 'Unc.' as described in Section 2.2. This new apr file will become the sole reference in glorg for the glred runs to generate the final time series (it doesn't matter what apr file you use in the glred command file). For this run, the glred command file will be the same as before, but the glorg command file will look like the following:
* Glorg command file for daily repeatabilities and combination

* A priori station coordinates
  apr_file ../tables/soln_emed96.apr

* Use IGS core minus hart and sant
  stab_site all
  stab_site -marm

* Estimate translation only
  pos_org xtran ytran ztran

To plot coordinate repeatabilities from your glred solutions for a single survey using GMT, execute

  sh_plotcrd -f globk_rep.org

This script scans the solution file (globk_rep.org) for the north, east, and up coordinates estimated for each day and produces time series for each of the stations and a pair of histograms showing the distribution of weighted and normalized rms repeatabilities. If the data extend over several years, then you should specify -s long to have a trend removed and the horizontal axis labeled in years rather than days. The programs and shell scripts called by sh_plotcrd, and that you can run individually to customize your time-series plots, are described in Chapter 4. Since the script creates a large number of files (one per station), you may want to execute it in a separate (e.g., ../plots) directory and reference the input file by path (e.g., -f ../soln/globk_rep.org.)

**Estimating repeatabilities and velocities from several surveys**

Multi-year solutions are best accomplished by first combining the h-files from individual sessions into a single h-file. This is not only more efficient in terms of processing time and disk storage, but allows you to generate statistics for long-term repeatability without mixing in the short-term scatter. To combine the data from a single survey, run globk using the command file described in the last section but add a line specifying the output file name:

  out_glb EMED96.GLX

The uppercase file name is not required but is a useful convention to denote a combined h-file. Optionally, at this point you can perform a second globk run in which you use the output h-file (EMED96.GLX) as sole input in the .gdl list, specify a new output

  out_glb EMED96.GLN

and suppress the orbital parameters by commenting out the apr_svs line. Since the orbital information has now been incorporated into the estimates and covariances of the station coordinates, there is no reason to carry them forward to the multi-year solution. On the other hand, they do no harm beyond the additional disk space needed to store them, so you may want to skip this step, at least until you are sure that the combined h-file is the one that you wish to store for future use. (Future versions of globk may allow use and then suppression of orbital parameters in a single run, thereby avoiding this additional step.)
To obtain a multi-year solution, your .gdl file will contain only the combined files from each survey:

EMED96.GLX
EMED97.GLX
EMED98.GLX
...

To get velocities, run globk with the same command file except the apr_neu line now specifies that velocities as well as positions are to be estimated

```plaintext
apr_neu all 20 20 20 1 1 1
```

Earth orientation and the reference frame can be specified in the same way except that you must now constrain velocities as well as position. In the globk command file set

```plaintext
org_opt BRAT CMDS PSUM VSUM
```

The BRAT print option for glorg is necessary if you want to see directly the values and uncertainties of relative velocities between the stations in your network. For large networks this can increase the size of the print (.org) file considerably, so if geocentric velocities are well determined, as is often the case with global analyses within the last few years, or if you have performed a regional stabilization, you may want to omit BRAT from the print options.

In the glorg command file you now need to specify parameters for both position and velocity stabilization:

```plaintext
pos_org xrot yrot zrot xtran ytran ztran
rate_org xrot yrot zrot xtran ytran ztran
```

To create a velocity map from your solution (e.g. globk_vel.org), execute

```plaintext
sh_plotvel -f globk_vel.org -maxsigma 5
```

where maxsigma gives maximum uncertainty in millimeters of sites to plot. Chapter 4 and the on-line help describe additional options for sh_plotvel that will allow you to produce journal-quality velocity maps including topography, tectonic features, and customized labels.

**Use of stochastic noise for stations and orbits**

There are a variety of reasons why you may want to treat station coordinates, orbital parameters, and Earth orientation parameters stochastically in your globk analysis. The classic method for analyzing the day-to-day or year-to-year variability of station coordinates or baseline components is to treat a subset of them stochastically and run both a forward and backward Kalman filter with the data. By performing both the forward and back solution, you obtain the best estimates of the coordinates and velocities of the stations treated deterministically at the same time as obtaining the variability of the stations treated stochastically. This approach has several disadvantages, however. The most obvious is the difficulty of deciding which stations to make deterministic and which to make stochastic. To retain nearly the full strength of the velocity solution, you would want to make only a few stations stochastic at a time, requiring many runs to see all of the repeatabilities. On the other hand, making deterministic a station for which there are outliers corrupts the solution and the apparent repeatability of other stations. A better
approach to determining repeatabilities is to use glred to estimate all coordinates independently for each session or survey, with the reference frame maintained by glorg stabilization with as many stations as possible, as discussed in the previous section. With this approach the network can translate and rotate from solution to solution, but any internal distortions represent real problems with the stations exhibiting them.

A more common current use of stochastic station coordinates is to account for time-correlated sources of error in the estimates of station position, including monument instability and signatures in global time series that may be due to errors in modeling the orbits or atmosphere. For example, to include random-walk noise at the level of $2 \text{ mm}/\sqrt{\text{yr}}$ in the horizontal coordinates, the globk command file entry would be

\begin{verbatim}
mar_neu all 4.e-6 4.e-6 0 0 0 0
\end{verbatim}

Prior to globk 5.05, Markov noise was also used to decouple erratic fluctuations in the estimates of vertical coordinates due to tropospheric noise, antenna changes, or blunders in entering the height of the antenna. The time-dependent nature of Markov noise makes it a poor proxy for these fluctuations, however. A better approach is to add random noise to the height estimates via the (new) neu_sig command. For example, to allow for 10 cm fluctuations in the vertical component for Kokee Park, the entry would be

\begin{verbatim}
neu_sig kokb 0 0 .10
\end{verbatim}

(If there are identifiable steps in the estimate of heights, you should rename the station at the time of the step [e.g., rename KOKB_GPS KOKB_APS] then equate the horizontal but not the vertical coordinate adjustments in glorg.)

UT1 and pole position are defined as single (global) parameters in globk, so to allow day-to-day variation you must specify for them a Markov process. The level of constraint depends on the precision and stability of your a priori Earth rotation series as described in Section 3.3.

For orbital parameters, stochastic variations are used in conjunction with multi-day arcs, most valuable prior to 1994 when the global tracking network was not strong enough to produce few part-per-billion orbital accuracy from a single day's observations. There is considerable flexibility in globk's use of stochastic parameters for orbits, allowing different levels of Markov constraint for each element of each satellite for each survey period. The difficulty, however, is determining in an efficient and objective manner what level to use. The analyst is forced to experiment with different values, using the chi-square increments between days from a globk non-stochastic forward solution and the day-to-day variations of the parameter estimates from a glred or back solution as a guide to choosing the optimal values. As a starting point, we discuss three levels, which we will designate "loose", "moderate", and "tight" orbital Markov constraints.

"Loose" constraints would allow about 10 m/day ($36500 \text{ m}^2/\text{yr}$) variation in satellite initial position and 1 mm/s/day ($365 \text{ mm/s}^2/\text{yr}$) variation in initial velocity, and 2–100 %/day ($0.15–365 /\text{yr}$) variation in non-gravitational ("radiation-pressure") parameters:

\begin{verbatim}
mar_svs all 36500 36500 36500 365 365 365
mar_rad all 365 365 .15 .15 .15 .15 .15 .15 .15
\end{verbatim}

Remember that "loose" is defined with respect to the uncertainties you would obtain with a single-day's data with your actual data set, so these values can only be considered a guide. More study is needed to determine the relative weighting of initial conditions and
non-gravitational-acceleration parameters to absorb a given degree of mis-modeling of
the satellites' motion. In the example shown, we have allowed a relatively large "reset"
of initial conditions each day, a large adjustment of the direct-radiation and y-bias
parameters, and only a small (2%) change in the other non-gravitational acceleration
parameters (the constant along the "B" axis and the once-per-rev coefficients in the Berne
model; see Section 7.2 of the GAMIT manual). An alternate strategy would be to keep
the initial condition variations small but allow large variations in all of the non-
gravitational acceleration parameters. Values of the Markov constraints much looser than
the ones shown here would completely decouple the orbits from day to day, effectively
estimating the orbital motion in single-day arcs even though you have formally used a
multi-day T-file with a single set of initial conditions. With loose Markov parameters for
the orbits, if you are combining more than one h-file for each day (e.g., with regional and
global observations), it is essential in this case to have the centers of the h-file data spans
(the center of the X-file) match. Otherwise, you will decouple the orbital parameters
estimated from the two h-files.

An example of "moderate" constraints would allow variations of 1 m/day (365 m²/yr), 0.1
m/s/day (3.65 (mm/s)²/yr), and 2–10 %/day (0.15–3.65 /yr) in initial position, initial
velocity, and non-gravitational acceleration:

```
mar_svs all 365 365 365 3.65 3.65 3.65
mar_rad all 3.65 3.65 .15 .15 .15 .15 .15 .15 .15 .15
```

An example of "tight" constraints would allow variations of 0.1 m/day (3.65 m²/yr), .01
mm/s/day (0.0365 (mm/s)²/yr), and 1 %/day (.0365 /yr) in the orbital parameters:

```
mar_svs all 3.65 3.65 3.65 .0365 .0365 .0365
mar_rad all .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04
```

To invoke the Markov process for an individual satellite the command is, e.g.,

```
mar_svs prn_02 3.65 3.65 3.65 .0365 .0365 .0365
mar_rad prn_02 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04
```

You can allow different values to be applied for different period of time by specifying in
the `globk` command file an auxiliary file:

```
svs_marf svs.emed_markov
```

where `svs.emed_markov` is the name of file, and it contains, e.g.,

```
* YY MM DD HR Dur PRN
* (days)
 94 9 12 6 5 PRN_02 3.65 3.65 3.65 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04
 94 10 1 0 10 PRN_02 365 365 365 3.65 3.65 3.65 3.65 3.65 .04 .04 .04 .04 .04 .04 .04
 94 10 2 0 5 PRN_05 365 365 365 3.65 3.65 3.65 3.65 3.65 .04 .04 .04 .04 .04 .04 .04
```

where `Dur` is the duration in days over which this alternative set of Markov parameters
should apply. As many as entries as desired can be put into the file.
3.5 Examples of globk and glorg output

There are two types of output produced in running globk/glred. The first is the "log" file, which contains the effect on the solution (usually loosely constrained) as each new h-file is added. The second is the "print" file, generated also by glorg, which contains the estimated parameter values. To illustrate the interpretation of these output files, we use as examples first the combination of regional and global data for a 10-day survey in the Salton Trough / Riverside County ("STRC") region of southern California from March, 1991, and then its combination with data from other GPS surveys and VLBI observations acquired between 1984 and 1997.

The log file for the STRC91 survey is shown below. Because the global tracking network was sparse in 1991, it is particularly advantageous to estimate initial conditions and parameters of the GPS orbits by combining the data from several days. In this case, we estimated parameters for three overlapping arcs, each using data from 4 or 5 (24-hr) days. Within each arc we allowed the initial conditions and radiation-pressure parameters to have stochastic (Markov) variations from day to day. This scheme is illustrated by the grouping of h-files in the log file below, in which we have combined h-files representing 24 hrs of global data and 10 hrs (20:44:08:40 UTC) of regional data. The first orbital arc (GAMIT T-file) spanned days 66–69 (7–11 March) with IC epoch 12h UTC on day 67 (year 91.1814). Data used to estimate the initial conditions and parameters included global data (h-files named _glob with the mid-point time 11:59) from days 66–69 and 10-hr regional data (h-files named _strc with mid-point time 02:43) from days 66–68 (the latter ending at 08:40 on day 69).

Updating SV ephemeris epoch by  91.1814 years
Global  1 using  3.7 Mb. Running time  2.00 Scaling by      1.000 1.00000000
  Orient_adj. (mas) 1991  3  7  0.50  91.25  -0.46  92.29  0.8  94.48
Global  2 using  2.9 Mb. Running time  8.00 Scaling by      1.000 1.00000000
  Orient_adj. (mas) 1991  3  8 -1.95  88.15  -3.07  84.33  2.2  91.33
Global  3 using  3.7 Mb. Running time 11.00 Scaling by      1.000 1.00000000
  Orient_adj. (mas) 1991  3  8 -3.39  86.86  -6.81  82.66  -4.2  90.48
Global  4 using  3.0 Mb. Running time 17.00 Scaling by      1.000 1.00000000
  Orient_adj. (mas) 1991  3  8 -3.39  88.66  -6.81  82.66  -4.2  90.48
Global  5 using  3.8 Mb. Running time 21.00 Scaling by      1.000 1.00000000
  Orient_adj. (mas) 1991  3  9  0.91  85.37  -6.22  78.47  -2.3  89.08
Global  6 using  3.8 Mb. Running time 26.00 Scaling by      1.000 1.00000000
  Orient_adj. (mas) 1991  3  9  1.55  83.62  -4.13  77.46  -8.0  88.43
Global  7 using  3.0 Mb. Running time 30.00 Scaling by      1.000 1.00000000
  Orient_adj. (mas) 1991  3  9  1.55  85.37  -6.22  78.47  -2.3  89.08
Global  8 using  3.8 Mb. Running time 36.00 Scaling by      1.000 1.00000000
  Orient_adj. (mas) 1991  3  9  0.91  85.37  -6.22  78.47  -2.3  89.08
Updating SV ephemeris epoch by     0.0082 years
Global  8 using  3.8 Mb. Running time 36.00 Scaling by      1.000 1.00000000
  Orient_adj. (mas) 1991  3  10  0.19  81.73  -4.11  74.75  -5.8  84.78
Global  9 using  2.9 Mb. Running time 41.00 Scaling by      1.500 1.00000000
  Orient_adj. (mas) 1991  3  11 -0.16  77.23  -4.98  70.60  -6.8  73.90
Global 10 using  3.5 Mb. Running time 66.00 Scaling by      1.000 1.00000000
  Orient_adj. (mas) 1991  3  12   0.05  76.35  -3.90  72.26  -4.8  72.16
...
There are three lines for each h-file used in the solution. The first gives the sequence number, size, run-time, and scale factors for the file. The second line is the most useful for evaluating the solution. It includes the GAMIT m-file name (which includes, conveniently, the day number), the binary h-file name (constructed from the GAMIT file name but with the date given as year, month, day, hour, minute), the number of parameters (NP) and the chi-square increment per degree of freedom when the data are added to the solution. If no tight constraints have been placed on the a priori values of the parameters, the first file should have a small chi-square value. As subsequent data are added, the values will increase to reflect the level of incompatibility between the newly added data and the solution from data previously included (see Dong et al., [1998] for the formulas used and a detailed discussion). An anomalously large chi-square increment in the log file is the most obvious indication that you have included erratic or poorly modeled data in your solution. If this occurs you should either omit the h-file (by commenting it out in the .gdl file) or return to the phase processing to find the source of the problem. If there is a consistent incompatibility between the global and regional h-files, there may be a model inconsistency between the two analyses (e.g., different antenna heights or antenna phase-center models). The third line gives the adjustment to Earth-orientation parameters as the data are added. The order is x-pole, x-pole sigma, y-pole, y-pole sigma, UT1, UT1 sigma, all in milli-arcseconds (mas). In this example, the uncertainties are all large because we have not yet defined the orientation of the frame (done later with glorg), but the adjustments are nevertheless small, indicating that the a priori orientation of the satellite orbits is consistent with the x, y, and UT1 values in the in_pmu file. Whenever the reference epoch of the initial conditions changes, there is an extra line (Updating SV ephemeris..) with the time since the last set of ICs, given in years. Thus the transition to the second arc (epoch 12h on day 70, 3 days or 0.0082 years later than the epoch of the first arc) is indicated by the first line of the next group of h-files:

Note that one of the regional h-files in each of the last two groupings has been downweighted (rescaled) to reflect poor consistency with the rest of the solution. These (approximate) weightings were determined from the nrms values of the GAMIT solutions, the day-to-day repeatability of coordinates (glred analysis), and the (globk) chi-square increments from an initial (unweighted) combination. In this solution, we have also varied the level of Markov perturbations allowed for individual satellites for specific spans (using an svs_marf file) based on the differences in initial conditions estimated for each day from the global h-files (also in a glred analysis). With the h-file rescaling and chosen level of Markov perturbations, we have achieved a near-unity level of chi-square increments for all of the files input to the solution.

The second type of output from the run will be a summary of the final solution, including estimates and uncertainties of the parameters and various representations of these parameters (e.g. baseline components). If you invoke glorg from within globk to define the reference frame, as suggested in Sections 3.3 and 3.4, then you will get two versions of the solution file—one from the globk solution (the .prt file in the globk command-line arguments) and one from the glorg solution (the .org file in the globk command file). Since the globk output (in this scheme) is loosely constrained, only the height and baseline length components have small enough uncertainties to be useful for careful evaluation. Examining the globk output is useful mainly if the glorg output indicates a problem with the solution and you want to determine if the source is in the data or the constraints. Thus,
in this mode, you should normally keep the *globk* output to a minimum (setting no options for \texttt{prt\_opt}—see Section 3.1) or suppressing it entirely using \texttt{prt\_opt NOPR}. For purposes of illustration, however, we show below some detail of both the *globk* (\texttt{prt}) and *glorg* (\texttt{org}) outputs:

---

**GLOBK Ver 4.16S, Global solution**

---

Solution refers to : 1991/3/17 11:59 (1991.2067) [Seconds tag 45.000]
Satellite IC epoch : 1991/3/15 12: 0 0.00
GPS System Information : Time GPST Frame J2000 Precession IAU76 Radiation model BERNE
Run time : 1998/4/2 9:34 23.00

There were 23 exps from 23 global files in the solution
There were 670124 data used, 0 data not used and 670124 data total
There were 441 global parameters estimated
There were 72 stations, 0 radio sources, and 15 satellites

The prefitt chi**2 for 5070 input parameters is 0.902

LIST file : strc91.gdl
COMMON file : glob.com
MARKOV file : globk cmb.cmd
GLORG CMD file : glorg.cmd
APriori file : /data8/rwk/scec_pre/soln/preland_nafd.apr
NUTATION file :
PLANETARY file :
SD ORIENT file :
PMU file : /data3/tah/tables/vlbi_84.1_95.11.dat
BACK SOLN file :
SVS GLOBAL file : strc91.glx
SVS EPHEM file : ../tables/sat.apr:A
SVS MARKOV file : ../gsoln/svs.mar
EARTHQUAKE file : /data9/ftp/pub/gps/scec/scec_eq_v1.5

There were 205 site renames applied

\begin{verbatim}
#   Orig     New   Specific  Period from   ----->      To         Position change (m)     Type
1 METT_GPS->WETI_GPS         1987/11/12  0: 0  1989/ 7/23  0: 0   0.0000 0.0000 0.0000 XYZ
2 RIC1_GPS->RICM_GPS         1989/ 2/ 5  0: 0  1992/12/31  0: 0   0.0000 0.0000 0.0000 XYZ
3 WEI3_GPS->WEMG_GPS         1989/ 2/ 5  0: 0  1999/12/31  0: 0   0.0000 0.0000 0.0000 XYZ
4 TSUK_GPS->TSU1_GPS         1988/ 7/10  0: 0  1991/12/17  0: 0   0.0000 0.0000 0.0000 XYZ
5 TSU0_GPS->TSU1_GPS         1989/11/ 9  0: 0  1989/11/28  0: 0   0.0000 0.0000 0.0000 XYZ
...  
204 MAVO_GPS->MAYR_GPS         1997/ 3/ 3  0: 0  1997/ 3/20  0: 0   0.0000 0.0000 0.0000 XYZ
205 USUD_GPS->USUD_DUP         1997/ 1/ 6  0: 0  1997/ 8/24  0: 0   0.0000 0.0000 0.0000 XYZ
\end{verbatim}

There were 2 earthquakes

\begin{verbatim}
#  CODE    Dur  Lat(deg)  Long(deg) Radius(km) Depth(km)    Date    Rename?
1   LA    0.0    34.4500    243.5000     500.0000    20.0000 1992/ 6/28 12: 0 YES
2   NR    0.0    34.2800    241.4400     150.0000     9.7200 1994/ 1/17 12:31 YES
\end{verbatim}

**COSEISMIC characteristics**

\begin{verbatim}
#  CODE  Static sigma  Spatial Sigma (Depth/Dist)^2
North  East  Height  North  East  Height
1   LA    1.0000   1.0000   1.0000   1.8000   1.8000   0.7000
2   NR    1.0000   1.0000   1.0000   1.8000   1.8000   0.7000
\end{verbatim}

**PRE-SEISMIC characteristics**

\begin{verbatim}
#  CODE  Dur  Static Process  Spatial Process (Depth/Dist)^2
(days)  North  East  Height  North  East  Height
1   LA    0.0    0.0000   0.0000    0.0000    0.0000    0.0000
2   NR    0.0    0.0000   0.0000    0.0000    0.0000    0.0000
\end{verbatim}

**POST-SEISMIC characteristics**

\begin{verbatim}
#  CODE  Dur  Static Process  Spatial Process (Depth/Dist)^2
(days)  North  East  Height  North  East  Height
\end{verbatim}
SITES WITH NO UPDATED A Priori COORDINATES:
ENDD_GPS 1109_GPS SAND_GPS DS40_GPS ANNT_GPS

Summary of Markov file globk_cmb.cmd
-------------------------------------------------------------------
* GLOBK command file for combining STRC regionals with multi-day orbits
* This version uses loose constraints all stations to get output combined file
make_svs ../../tables/sat.apr
* earthquake and site rename
eq_file /data9/ftp/pub/gps/scec/scec_eq_v1.5
com_file glob.com
art_file glob.srt
out_glb strc91.glx
* Station apr files
apr_file /data8/rwk/scec_pre/soln/preland_nafd.apr
in_pmu /data3/tah/tables/vlbi_84.1_95.11.dat
max_chii 100. 10000.
desc STRC91 combination with multi-day stochastic orbits
prt_opt CMDS GDLF
* select the stations you want to retain in the solution
use_site clear all
* Loose here for combination
apr_neu all 20.0 20.0 20.0 0 0 0
* Markov height for nojm and wetm to account for 10 cm / 1.5 m height error between GIG ties and strc
* --allow 4 m**2/0.1 yr or 40 m**2/yr
mar_neu nojm 0 0 40 0 0 0
mar_neu wetm 0 0 40 0 0 0
* Estimate translation and scale explicitly -- not needed: see notes 970826
* Loosely constrain all satellite initial condition parameters
 apr_svs all 100 100 100 10 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
mar_svs all 3.65 3.65 3.65 0.0365 0.0365 0.0365
mar_rad all 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
svs_marf ../gsoln/svs.mar
* For a small network, constrain EOP with the IERS values to 0.25 mas, 0.1 mas/day
apr_wob 100 100 10 10 0 0
apr_ut1 100 10 0 0 0 0
mar_wob 22.8 22.8 3.65 3.65 0 0 0 0
mar_ut1 22.8 3.65 0 0 0 0
org_cmd glorg.cmd
org_opt CMDS GDLF
org_out glred.org
-------------------------------------------------------------------
EXPERIMENT LIST from glob.srt
# Name SCALE Diag Scale Status
1 ../glbf/glob1/h9103071159_glob.glr 1.000 1.00000000 USED
2 ../glbf/local/h9103080243_strc.glx 1.000 1.00000000 USED
...
22 ../glbf/local/h9103170243_strc.glx 1.000 1.00000000 USED
23 ../glbf/glob3/h9103171159_glob.glr 1.000 1.00000000 USED

PARAMETER ESTIMATES FROM GLOBK Vers 4.16S
# PARAMETER Estimate Adjustment Sigma
1. MADR_GPS X coordinate (m) 4849202.4060 -0.0849 1.3602
2. MADR_GPS Y coordinate (m) -360329.5954 -0.3645 2.0938
3. MADR_GPS Z coordinate (m) 4114913.4997 0.4670 1.7218
Unc. MADR_GPS 4849202.4060 -360329.5954 4114913.4997 0.0096 0.0219 -0.0034 1991.207 1.3602
2.0938 1.7218
Loc. MADR_GPS N coordinate (m) 4500553.9009 0.3929 2.2526
Loc. MADR_GPS E coordinate (m) 3014706.2943 -0.3698 2.0295
Loc. MADR_GPS U coordinate (m) 829.7021 0.2589 0.0746
NE,NU,EU position correlations 0.6318 0.1334 0.0530
...
42. BLAC_GPS X coordinate (m) -2306307.1398 -0.1456 0.4557
44. BLAC_GPS Y coordinate (m) -4787914.6736 -0.3193 0.9200

GLOBK Documentation 59 Mon, Mar 25, 2002
The first part of the file summarizes the input data and commands, including a list of the station renames and earthquakes specified (but not necessarily applied) by the eq_file. The renames listed in the example are changes made necessary by inconsistencies between the original (GAMIT) processing and the current solution. We also commonly use this feature to remove a station for one or more days (e.g., ALGO_GPS -> ALGO_BAD, where ALGO_BAD would be excluded from the solution by the use_site command). This section also includes the final chi-square per degree of freedom for the solution before constraints are added. Next, if the PSUM print option is set, would be the north, east, and up adjustments to station positions. These are omitted here in the loose globk print but are discussed below for the glorg print file. Always printed are the parameter adjustments. The coordinate estimates are given both in Cartesian and local representation. Both here and in the station or baseline summary sections, the north and up adjustments are computed conventionally; i.e., north is the product of the adjustment in geodetic latitude by the semi-major axis of the ellipsoid (see kf/includes/const_param.h for ellipsoid definition) and up is the adjustment in geodetic height. The east adjustment, however, is unconventional: the adjustment in longitude (measured east from Greenwich) is multiplied by the radius of the small circle at the nearest 1 degree latitude line of the station. This scheme keeps the adjustment in the east value from being affected by changes in latitude. The estimates of orbital and Earth rotation parameters (EOPs) are self-explanatory, but note that in a globk solution to combine many days of data, in which new initial conditions and EOPs are estimated for each day, the estimates represent the solution from only the last day and are therefore of limited value. The final sections of the print file express the coordinate estimates in terms of baseline length and components. These appear only if BLEN has been set in prt_opt and are again omitted in this example.

Shown below is the glorg print file for the same run. It begins with a report of application of generalized constraints to establish the reference frame ("stabilization").
Recall that `glorg` is minimizing, in an iterative scheme, the departure from a priori values of the coordinates of a selected set of stations while estimating a rotation and translation of the frame. The first four lines echo the parameters used to decide whether a station is retained at each iteration of the stabilization scheme. The first line indicates that only 50% of the weight for a station may be altered in iteration, thus preventing the ratio of weights from becoming too high. The third line indicates that heights are downweighted by a factor of 10 relative to horizontal coordinates. The second line and the second column of the fourth line indicate that a station is removed if its residual becomes more than 4 times the rms of the fit (after application of relative weights) but not if its residual is within 12 mm (4 times the `Min Position` value of 3 mm). The first column of the fourth line establishes a floor for the ratio tolerance (2.0 here) used to remove a station which has a larger-than-average height uncertainty (see the `cnd_hgtv` command). Height sigma is used as the primary condition at the first iteration since the horizontal coordinates will not be well determined until after initial stabilization.

<table>
<thead>
<tr>
<th>STRC91 combination with multi-day stochastic orbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>+-----------------------------------------------</td>
</tr>
<tr>
<td>+ GLORG Version 4.04S +</td>
</tr>
<tr>
<td>+-----------------------------------------------</td>
</tr>
</tbody>
</table>

Stabilization with 50.0% constant, 50.0% site dependent weighting.
Delete sites with 4.0-sigma condition.
Height variance factor 10.00 Position, 10.00 Velocity
Min dh sigma Position 0.0050 m; Min Position RMS 0.0030 m
Min dh sigma Velocity 0.0050 m/yr; Min Velocity RMS 0.0030 m/yr

Starting stabilization iteration 1
For 8 sites in origin, min/max height sigma 59.16 87.33 mm; Median 67.11 mm, Tol 7.94 mm
Removing YELL_GPS from origin condition, height sigma 87.33 mm, Ratio Tol 2.000

Position system stabilization results

X Rotation (mas)	6.48985	1.76907 Iter 1				
Y Rotation (mas)	5.51514	2.83950 Iter 1				
Z Rotation (mas)	-2.78903	0.61673 Iter 1				
X Translation (m)	0.04711	0.04285 Iter 1				
Y Translation (m)	-0.40873	0.05498 Iter 1				
Z Translation (m)	0.30527	0.04604 Iter 1				
Condition Sigmas used	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Sites and relative sigmas used in stabilization
MADR_GPS 1.00 BLAC_GPS 1.00 OCOT_GPS 1.00 MONU_GPS 1.00 PIN2_GPS 1.00 MOJM_GPS 1.00 DRAO_GPS 1.00
For 21 Position Iter 1 Pre RMS 0.1371 m; Post RMS 0.0139 m

Starting stabilization iteration 2
For 7 sites in origin, min/max height sigma 59.16 76.20 mm; Median 60.01 mm, Tol 5.00 mm
Removing MADR_GPS from origin condition, height sigma 73.96 mm, Ratio Tol 2.000
Removing MDUM_GPS from origin condition, height sigma 73.52 mm, Ratio Tol 2.000
Removing DRAO_GPS from origin condition, height sigma 76.20 mm, Ratio Tol 2.000

Position system stabilization results

X Rotation (mas)	11.06531	20.27055 Iter 2			
Y Rotation (mas)	67.38129	23.49500 Iter 2			
Z Rotation (mas)	-90.01800	28.36285 Iter 2			
X Translation (m)	2.14026	0.94660 Iter 2			
Y Translation (m)	-2.46450	0.58458 Iter 2			
Z Translation (m)	-1.06836	0.62717 Iter 2			
Condition Sigmas used	0.0000	0.0000	0.0000	0.0000	0.0000

Sites and relative sigmas used in stabilization
BLAC_GPS 0.90 OCOT_GPS 0.94 MONU_GPS 0.94 PIN2_GPS 0.90
For 12 Position Iter 2 Pre RMS 0.1181 m; Post RMS 0.0036 m
Rotating into local coordinates for equates
Checking covariance matrix after equate and force
STRC91 combination with multi-day stochastic orbits

In this example, we have allowed two iterations of the reference frame solution (there is little harm, and often gain in allowing three or four). There were initially 8 stations specified in the glorg stab_site list. Yellowknife (YELL_GPS) is removed prior to the first solution because the difference between its height uncertainty (87.33 mm) and the median uncertainty (67.11) was more than twice the difference between the median and minimum (59.16 mm) values. With 7 stations remaining, the rms fit is 13.9 mm. At the next iteration, three additional stations—one within California (MOJM) and two outside (MADR and DRAO)—are removed because their heights uncertainties are now more than twice the difference between the median and minimum values. This has reduced the rms of the fit to 3.6 mm, but the frame is now defined by only four regional stations. This result is not what we desired, and it could have been prevented by setting a value of at least 8 mm for the first argument of the stab_min command (since the difference of the height sigmas of these stations and the median is 16 mm and the ratio tolerance is 2.).

Next in the glorg print file is a repeat of the files and command used in the globk run. In the earthquake list, however, only those used are listed (i.e., those with epochs before the data epoch, none in this case).

---

GLOBK Ver 4.17S, Global solution

Solution refers to: 1991/3/17 11:59 (1991.2067) [Seconds tag 45.000]
Satellite IC epoch: 1991/3/15 12:00 0.00
GPS System Information: Time GPST Frame J2000 Precession IAU76 Radiation model BERNE
Run time: 1998/4/2 9:34 23.00

There were 23 exps from 23 global files in the solution
There were 670124 data used, 0 data not used and 670124 data total
There were 441 global parameters estimated
There were 72 stations, 0 radio sources, and 15 satellites

The prefit chi**2 for 5070 input parameters is 0.902

LIST file: strc91.gdl
COMMON file: glob.com
MARKOV file: globk_cmb.cmd
GLORG CMD file: glorg.cmd
APRIORI file: /data8/rwk/scec_pre/soln/preland_nafd.apr
APRIORI file: /data8/rwk/scec_pre/soln/preland_nafd.apr (glorg)
NUTATION file:
PLANETARY file:
SD ORIENT file:
PMU file: /data3/tah/tables/vlbi_84.1_95.11.dat
BACK SOLN file:
OUTGLOBAL file: strc91.glx
SVS EPHEM file: /.../tables/sat.apr:A
SVS MARKOV file: /gson/svs.mar
EARTHQUAKE file: /data9/ftp/pub/gps/scec/scec_eq_v1.5

There were 205 site renames listed. Renames used are:

<table>
<thead>
<tr>
<th>#</th>
<th>Orig</th>
<th>New</th>
<th>Specific</th>
<th>Period from</th>
<th>To</th>
<th>Position change (m)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>TSUK_GPS</td>
<td>TSU2_GPS</td>
<td>1991/12/17</td>
<td>0 0</td>
<td>1993/12/15</td>
<td>0 0</td>
<td>0.0000</td>
</tr>
<tr>
<td>14</td>
<td>DS42_GPS</td>
<td>TIDB_GPS</td>
<td>1989/12/10</td>
<td>0 0</td>
<td>1999/12/31</td>
<td>0 0</td>
<td>0.0000</td>
</tr>
<tr>
<td>22</td>
<td>JPL1_GPS</td>
<td>JPMGPS</td>
<td>1990/4/2</td>
<td>0 0</td>
<td>1999/12/31</td>
<td>0 0</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>MAYO_GPS</td>
<td>MAYR_GPS</td>
<td>1995/2/7</td>
<td>0 0</td>
<td>1995/2/20</td>
<td>0 0</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

There were 2 earthquakes listed. Earthquakes used are:

<table>
<thead>
<tr>
<th>#</th>
<th>CODE</th>
<th>Lat (deg)</th>
<th>Long (deg)</th>
<th>Radius (km)</th>
<th>Depth (km)</th>
<th>Date</th>
<th>Rename?</th>
</tr>
</thead>
</table>
SITES WITH NO UPDATED APRIOIRI COORDINATES:
ENDD_GPS  1109_GPS  SAND_GPS  DS40_GPS  ANKT_GPS

Summary of Markov file globk_cmb.cmd

* GLOBK command file for combining STRC regionals with multiday orbits
...

EXPERIMENT LIST from glob.srt
#  Name                                  SCALE Diag PPM  Forw Chi2 Back Chi2 Status
1 ../glbf/glob1/h9103071159_glob.glr     1.000   0.000     0.375    -1.000   USED
2 ../glbf/local/h9103080243_strc.glx     1.000   0.000     0.293    -1.000   USED
3 ../glbf/glob1/h9103081159_glob.glr     1.000   0.000     1.077    -1.000   USED
...
23 ../glbf/glob3/h9103171159_glob.glr     1.000   0.000     1.884    -1.000   USED

For the glorg print we have specified PSUM as an option, so we get a more readable table of the adjustments and uncertainties of the east, north, and up coordinates for each station. This table is the most useful for evaluating the solution and contains the values later extracted by ensum (invoked by sh_globk_scatter) in order to generated statistics and plot station-coordinate repeatabilities. The column marked RHO in the coordinate adjustments (Rne in the baseline component estimates) gives the correlation between the north and east estimates; this is necessary to compute horizontal uncertainty ellipses. As elsewhere in globk, the stations are ordered by longitude, so that (usually) nearby stations are grouped together in the list:

SUMMARY POSITION ESTIMATES FROM GLOBK Ver 4.17S
(deg)    (deg)        (mm)      (mm)      (mm)      (mm)               (mm)      (mm)  
355.750   40.429      295.7     214.8     120.1     149.2  0.894      -182.4      48.7 MADR_GPS
288.507   42.613        3.3     329.1      13.1     109.0  0.125      -131.4      25.6 WSFM_GPS
279.616   25.614      105.6     308.3      40.5      90.8   0.954         5.2      19.2 RICM_GPS
245.519   62.481     -314.4      44.2      89.4      10.2 -0.468      -180.7      26.9 YELL_GPS
245.519   34.044      313.5    -147.7       5.3       5.9 -0.286       201.7      13.7 ENDD_GPS
245.193   30.931       18.1       3.7      10.9       4.9  0.614        81.4      16.1 SFBC_GPS
244.280   33.664       -2.4       3.5       0.8       1.6  0.128        21.5       2.4 BLAC_GPS*
244.236   33.834       -57.0      -2.4       2.7      1.9 -0.043       281.0       7.6 JTRE_GPS*
243.590   33.039      -49.1      38.9       3.5       2.7  0.123       315.9      12.9 SD16_GPS
243.577   32.892       32.892  0.0       2.3      1.9 -0.043       32.6       3.7 MENDU_GPS*
243.569   33.870      -61.0      47.6       1.3      1.6  0.043       281.0       7.6 EDOM_GPS
243.542   33.612       -2.3      -1.3       3.2      1.9 -0.043       26.9       2.9 PIN2_GPS*
243.511   33.839      -60.8      -2.3      -1.3      3.2  0.123       32.6      15.1 MONU_GPS*
243.511   33.839      -61.0      -2.3      -1.3      3.2  0.123       32.6      15.1 MONU_GPS*
...
18.938   69.663      457.0     159.4     141.2     113.7  0.910      -270.5      50.1 TROM_GPS
12.879   49.145      494.5     202.6     144.6     127.7  0.470      -1082.8     151.8 WETM_GPS

The stations marked by an asterisk (*) are those used in stablization. Note that since the reference frame stabilization used only stations within California, only stations in this region (longitudes 243–245) have small horizontal uncertainties. Following the position summary is a list of all the parameter adjustments, as in the globk print file:

PARAMETER ESTIMATES FROM GLOBK Vers 4.17S
#      PARAMETER                            Estimate       Adjustment     Sigma
1. MADR_GPS X coordinate  (m)            4849202.2333      -0.2576       0.0881
2. MADR_GPS Y coordinate  (m)            -360328.9148       0.3161       0.1266
3. MADR_GPS Z coordinate  (m)            4114913.0778       0.0451       0.1236
Unc. MADR_GPS  4849202.2333  -360328.9148  4114913.0778  0.0096  0.0219 -0.0034 1991.207  0.0881
0.1266  0.1236
Loc. MADR_GPS N coordinate  (m)            4500553.7237       0.2161       0.1492
Loc. MADR_GPS E coordinate  (m)            30144706.9592      0.2962       0.1201
Loc. MADR_GPS U coordinate  (m)            829.2590      -0.1841       0.0487
NE,NU,EU position correlations          0.8939       0.1922      -0.1166
The line beginning with Unc. contains the values of the coordinates for the epoch at which the position and velocity are uncorrelated—the “weighted” midpoint of the data span if there are no a priori constraints applied to the velocity components. In this single-survey solution, in which no velocities are estimated, the values on the Unc. line are the same as the lines above. Note that grep'ing on the lines beginning with Unc., and then removing these characters from the output will produce a list of coordinates (and velocities) in the appropriate format for the apr_file.

To illustrate stabilization and the output table obtained when velocities are estimated, we shown below the glorg print file for a combination of all of the GPS and VLBI data acquired in southern California, and the coincident global tracking between 1974 and 1997:

```
SCEC 86.5 - 97.5
+-------------------------------+
+ GLORG Version 4.04S +
+-------------------------------+
Stabilization with 50.0% constant, 50.0% site dependent weighting.
Delete sites with 4.0-sigma condition.
Height variance factor 1000.00 Position, 1000.00 Velocity

Starting stabilization iteration 1
For 12 sites in origin, min/max height sigma 107.04 120.55 mm; Median 115.30 mm
Position system stabilization results
X Rotation (mas) 0.56251 +- 0.04259
Y Rotation (mas) 1.27414 +- 0.04574
Z Rotation (mas) -1.81402 +- 0.04225
X Translation (m) -0.01197 +- 0.00141
Y Translation (m) -0.02895 +- 0.00132
Z Translation (m) 0.16177 +- 0.00130
Scale (ppb) 2.02083 +- 3.31595
Condition Sigmas used 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sites and relative sigmas used in stabilization
MADR_GPS 1.00 ALGO_GPS 1.00 RCM5_GPS 1.00 YELL_GPS 1.00 FAIR_GPS 1.00 KOKB_GPS 1.00
TIDB_GPS 1.00 YAR1_GPS 1.00 TRON_GPS 1.00 WETT_GPS 1.00 ONSA_GPS 1.00 KOSG_GPS 1.00
For 36 Position Iter 1 Pre RMS 0.0592 m; Post RMS 0.0023 m
Deleting ALGO_GPS Position error 0.0099 m, relative variance 0.43 Nsigma 6.53
For 12 sites in origin, min/max dh/dt sigma 6.61 15.88 mm/yr; Median 11.53 mm/yr
Velocity system stabilization results
X Rotate (mas/yr) 0.95825 +- 0.01261
Y Rotate (mas/yr) 0.98218 +- 0.01355
Z Rotate (mas/yr) 0.14656 +- 0.01251
X Trans (m/yr) 0.01682 +- 0.00042
Y Trans (m/yr) -0.01377 +- 0.00039
Z Trans (m/yr) -0.01316 +- 0.00039
Condition Sigmas used 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sites and relative sigmas used in stabilization
MADR_GPS 1.00 ALGO_GPS 1.00 RCM5_GPS 1.00 YELL_GPS 1.00 FAIR_GPS 1.00 KOKB_GPS 1.00
TIDB_GPS 1.00 YAR1_GPS 1.00 TRON_GPS 1.00 WETT_GPS 1.00 ONSA_GPS 1.00 KOSG_GPS 1.00
For 36 Velocity Iter 1 Pre RMS 0.0143 m/yr; Post RMS 0.0007 m/yr
Deleting ALGO_GPS Velocity error 0.0026 m/yr, relative variance 0.55 Nsigma 5.07
```

Starting stabilization iteration 2
For 11 sites in origin, min/max height sigma 107.04 120.55 mm; Median 116.08 mm
Position system stabilization results
In this solution we have defined the reference frame using 11 global stations for which we have GPS and/or VLBI data over much of the period covered. When we are estimating velocities, the position results are of secondary importance (and don't affect the velocity estimates very strongly; see Feigl et al. [1993]). The rms of the velocity residuals of the 11 stations (essentially the 22 horizontal components) with respect to ITRF96 is 0.6 mm/yr, an excellent fit. With recent data from the 20–50 IGS core stations, you should always be able to obtain a fit at the level of 1–2 mm/yr with appropriate selection of stations and editing of the quasi-observations.

For this solution we have equated the horizontal velocities of most of the collocated GPS and VLBI stations. The list of chi-square increments from applying each equate gives you a good idea of where in your data set there are inconsistencies:

Rotating into local coordinates for equates

Equating parameters: 384 Equates to be applied

<table>
<thead>
<tr>
<th>Sigma</th>
<th>dChi**2</th>
<th>List of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02000</td>
<td>0.00 FTOR7266 WP FTOR_GPS WP</td>
</tr>
<tr>
<td>2</td>
<td>0.02000</td>
<td>0.30 FTOR7266 EP FTOR_GPS EP</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>0.00000</td>
<td>0.37 BLAC_GPS ND BLAC_GPS ED</td>
</tr>
<tr>
<td>218</td>
<td>0.00000</td>
<td>0.42 BLAC_GPS ED BLAC_GPS ED</td>
</tr>
<tr>
<td>219</td>
<td>0.00000</td>
<td>0.42 BLAC_GPS ND BLAC_GPS ED</td>
</tr>
<tr>
<td>220</td>
<td>0.00000</td>
<td>0.57 BLAC_GPS ED BLAC_GPS ED</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>0.00000</td>
<td>18.61 OVRG_130 ND OVRG_GPS ND</td>
</tr>
<tr>
<td>384</td>
<td>0.00000</td>
<td>0.01 OVRG_130 ED OVRG_GPS ED</td>
</tr>
</tbody>
</table>

Total change in chi**2/f is 2.19 for 384 equates, and 392 conditions

Solution chi**2/f now 0.44 with 2228 degrees of freedom

If an equate is used to tie together the velocity of two stations, one of which has only one epoch of observations (as, e.g., a renamed station after an earthquake), then the chi-square increment will always be small. If there are two stations, each with a long span of
independent data, as for example the Owens Valley VLBI (OVRO_130) and GPS (OVRO_GPS) stations in this solution, the chi-square increment may be large and indicates the level of inconsistency between the two data sets. The small chi-square increment for the equating of the Black Butte VLBI (BLKB7209) and GPS (BLAC_GPS) stations indicates that the estimates are consistent (though the GPS estimate in this solution is relatively weak). There is an apparent inconsistency between the pre-Landers velocity (now representing both the VLBI and GPS data) and the velocity estimated from only post-Landers GPS data (BLAC_GLA, renamed from BLAC_GPS automatically as a result of the eq_def command). At the bottom of the equate list is the chi-square per degree of freedom for the solution after the equates have been applied. If your noise model is correct, this value should be close to unity.

The next section of the print file is again the globk solution summary:

<table>
<thead>
<tr>
<th>LIST file</th>
<th>combined.gdl</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMON file</td>
<td>combined.com</td>
</tr>
<tr>
<td>MARKOV file</td>
<td>globk_vel.cmd</td>
</tr>
<tr>
<td>GLORG CMD file</td>
<td>glorg_vel.cmd</td>
</tr>
<tr>
<td>APRIORI file</td>
<td>scec_nafd.apr</td>
</tr>
<tr>
<td>APRIORI file</td>
<td>scec_nafd_apr (glorg)</td>
</tr>
<tr>
<td>NUTATION file</td>
<td></td>
</tr>
<tr>
<td>PLANETARY file</td>
<td></td>
</tr>
<tr>
<td>SD ORIENT file</td>
<td></td>
</tr>
<tr>
<td>PMU file</td>
<td></td>
</tr>
<tr>
<td>BACK SOLN file</td>
<td></td>
</tr>
<tr>
<td>OUTGLOBAL file</td>
<td></td>
</tr>
<tr>
<td>SVS EPHEM file</td>
<td></td>
</tr>
<tr>
<td>SVS MARKOV file</td>
<td></td>
</tr>
<tr>
<td>EARTHQUAKE file</td>
<td>scec_eq_v1.5</td>
</tr>
</tbody>
</table>

There were 210 site renames applied

<table>
<thead>
<tr>
<th>CODE</th>
<th>Lat (deg)</th>
<th>Long (deg)</th>
<th>Radius (km)</th>
<th>Depth (km)</th>
<th>Date</th>
<th>Rename?</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT</td>
<td>33.9600</td>
<td>243.7000</td>
<td>60.0000</td>
<td>14.4000</td>
<td>1992/4/23 4:50</td>
<td>YES</td>
</tr>
<tr>
<td>LA</td>
<td>34.4500</td>
<td>243.5000</td>
<td>500.0000</td>
<td>20.0000</td>
<td>1992/6/28 12:0</td>
<td>YES</td>
</tr>
<tr>
<td>NR</td>
<td>32.8200</td>
<td>241.4400</td>
<td>150.0000</td>
<td>9.7200</td>
<td>1994/1/17 12:31</td>
<td>YES</td>
</tr>
</tbody>
</table>

There were 3 earthquakes

<table>
<thead>
<tr>
<th>CODE</th>
<th>Lat (deg)</th>
<th>Long (deg)</th>
<th>Radius (km)</th>
<th>Depth (km)</th>
<th>Date</th>
<th>Rename?</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT</td>
<td>0.1000</td>
<td>0.1000</td>
<td>0.1000</td>
<td>0.1000</td>
<td>0.1000</td>
<td>0.1000</td>
</tr>
</tbody>
</table>
PRE-SEISMIC characteristics
# CODE Dur Static Process Spatial Process (Depth/Dist)^2
       (days) North East Height North East Height
1   JT 0.0 0.0000 0.0000 0.0000       0.0000     0.0000     0.0000
2   LA 0.0 0.0000 0.0000 0.0000       0.0000     0.0000     0.0000
3   NR 0.0 0.0000 0.0000 0.0000       0.0000     0.0000     0.0000

POST-SEISMIC characteristics
# CODE Dur Static Process Spatial Process (Depth/Dist)^2
       (days) North East Height North East Height
1   JT 0.0 0.1000 0.1000 0.1000       1.8000     1.8000     0.7000
2   LA 0.0 0.1000 0.1000 0.1000       1.8000     1.8000     0.7000
3   NR 0.0 0.1000 0.1000 0.1000       1.8000     1.8000     0.7000

SITES WITH NO UPDATED APRIORI COORDINATES:
HOFN7635  AZOR7609  FORTLEZA  OHIGGINS  SC-VLBA  HN-VLBA  GGAO7108 
PRE-SEISMIC characteristics
# CODE Dur Static Process Spatial Process (Depth/Dist)^2
       (days) North East Height North East Height
1   JT 0.0 0.0000 0.0000 0.0000       0.0000     0.0000     0.0000
2   LA 0.0 0.0000 0.0000 0.0000       0.0000     0.0000     0.0000
3   NR 0.0 0.0000 0.0000 0.0000       0.0000     0.0000     0.0000

POST-SEISMIC characteristics
# CODE Dur Static Process Spatial Process (Depth/Dist)^2
       (days) North East Height North East Height
1   JT 0.0 0.1000 0.1000 0.1000       1.8000     1.8000     0.7000
2   LA 0.0 0.1000 0.1000 0.1000       1.8000     1.8000     0.7000
3   NR 0.0 0.1000 0.1000 0.1000       1.8000     1.8000     0.7000

SITES WITH NO UPDATED APRIORI COORDINATES:
HOFN7635  AZOR7609  FORTLEZA  OHIGGINS  SC-VLBA  HN-VLBA  GGAO7108 

The experiment list here gives an example of intermediate combination of h-files and also the use of inverse sorting (srt_dir -1). The first file listed has all of the GPS data after the Landers earthquake (i.e., 1992.5–1998.0); the second the VLBI data (1980.0–1994.5; and the third, the GPS data prior to Landers (1986.4–1992.5). We stacked them in reverse time order so that the strongest data would be accumulated first, a procedure that enhances numerical stability. When velocities are estimated, their summary table appears first in the output of results:
The small adjustments (< 0.5 mm/yr) away from the a priori (ITRF96) values for the Westford/Haystack stations, which were not used in stabilization, is a comforting check on the reference frame and the solution as a whole. Note that all of the stations for which horizontal velocities were equated have the same adjustments and estimated values. If this is not true, then most likely you have failed to make the a priori values of velocity the same in the apr_file.

In this multiyear solution we have allowed the heights of some of the stations to be stochastic in order to render the estimates of horizontal positions and velocities insensitive to blunders in recording the heights of antennas. This causes the sigmas on height rates to be large (~90 mm/yr in the example). Allowing stochastic heights compromises your ability to detect problems in the solution but does not weaken significantly the estimates of horizontal positions and velocities. It should be avoided if possible but used if necessary.
3.6 Error messages

globk/glred error messages

Several categories of error messages are generated by globk. The first are system errors associated with missing or incorrectly formatted files. These have the form

GLOBK/update_glorg_apr: IOSTAT error opening file /data1/sites/itrf96.apr ERROR 1018

and can usually be traced to an incorrect path or filename in the command file.

The second type of error results from the inability of the program to decode an entry in the command file; e.g.,

GLOBK/multiread: IOSTAT error decoding file apr_wob 100 100 10 10 0 0 ERROR -1

This highly generic message generated by multiread can indicate a misspelling of the command, a station mentioned in the command not being present in the solution, or an unexpectedly short list of tokens. In the example, shown the problem is the last of these—the apr_wob command requires 8 arguments and has only 6. In this case, no harm is done since the last two are unused and can be ignored. In some cases, there are traps coded that prevent the multiread message from occurring. For example, if you do not include a priori constraints for all the possible radiation pressure parameters (9) in the apr_svs or mar_svs command, globk recognizes that you might have entered them separately with the apr_rad or mar_rad commands:

**WARNING** 11 arguments missing from MAR_SVS command. OK if MAR_RAD used
**WARNING** 2 arguments missing from APR_RAD command. OK if APR_SVS used

All of the errors mentioned so far are most likely to occur at the beginning of a run, when globk scans the command file and the input h-files. One other potential problem can also be detected at this stage—a station included in the h-files for which you have no entry in the apr_file:

**WARNING** ENDD_GPS not in apr_files

If a station is missing from the apr_file, globk will use as a priori values of the coordinates those on the first h-file, so this message need not cause alarm. However, if you plan to equate adjustments of the coordinates or velocities with those of another station, or use the station in glorg to define the reference frame, then you should make sure that the apr_file has correct and matching entries for the station(s).

Once the filtering of the data has started, there are warnings, sometimes accompanied by action, whenever the h-file being read is inconsistent with the Kalman filter estimates up to that point or with the a priori values of the parameters. Before adding the new data, globk first compares the estimated values of the parameters in the h-file with the a priori. If they differ by more than the tolerance set by the second argument of max_chii (see Section 3.1), globk will print a message of the form

BAD PREFIT coordinates for site HART_GPS Diffs from apriori -14.911 7.236 -2.

This usually means that the value in the apr_file is wrong. If the differences are of order tens of meters and the coordinates are not being constrained or used in glorg for stabilization of the reference frame, then no harm may be done. It’s a good idea to
updates the coordinates in the apr_file, however, from the results of your solution. A similar message can be generated for Earth orientation values, indicating an error in the in_pmu table. An example is

BAD PREFIT EOP parameter LOD  Difference from apriori  -5996.46536

With the new scheme of generating a priori values for the satellite parameters directly from the h-files (make_svs command), you should never get a warning about inconsistencies in the orbital parameters.

After checking for parameter consistency, globk calculates a (3-parameter) rotation between the coordinates on the h-file (estimated by GAMIT) and the coordinates of the running solution. If the rotation is smaller than the tolerance given by the third argument of max_chii, globk will apply a rotation to the h-file values to make them consistent with the solution. If the difference is too large, however, the rotation will not be applied. The warning messages are

Large Rotation removed: Input EOP estimates 204.192 -87088.429 -417.227 (Xp,Yp,
dPosition estimates 42249.248 221.837 143786.203 (Xp,Yp,
Rotation TOO Large removing. Tolerance  10000.00 mas
Rots (XYZ, mas)  87088.29 -41823.62 -144732.244 Trans (m)  20.472976-20.499412 -9.
Large Rotation removed: Input EOP estimates -86884.236 87088.288 41832.021 (Xp,Yp,
dPosition estimates -41823.627 144008.041 -144732.244 (Xp,Yp,

Finally, after checking parameters and applying (or not) a rotation, globk computes the chi-square increment that would occur if the data from the new h-file were added to the solution. If this value exceeds the tolerance given by the first max_chii argument, the data are not included. This feature allows the solution to continue uncorrupted by outliers among the input h-files. The warning message has the form

GLOBK/glfor: Not used chi**2 increment too large (Name ../glbf/h9103081159_glob.glr)

The large chi-square increment indicates either a problem with your primary-data solution (e.g., from GAMIT) or an overly tight constraint on one or more of the input parameters. If the globk solution has been run with loose constraints on all of the parameters (as you would do, for example, if you are combining global and regional h-files), then the problem must be with the data. If, on the other hand, you have constrained either the station coordinates or orbits, then these constraints may be too tight. To isolate the problem, try repeating the run first with the apr_file command commented out (forcing globk to use the values on the h-files themselves) and then with the apr_svs and mar_svs command commented out, making the orbits effectively loose. You can also check the adjustments to coordinates and orbits in the print file from the original solution to see which station(s) or satellite(s) is causing the problem.

As a general warning, Kalman filters are notorious for rounding error, and the particular formulation used in globk is among the worst. (The motivation for the choice of form used was driven by the ease of vectoring the computations. On the original computer on which globk was developed this was critical for generating timely solutions.) The effects of rounding error can be greatly minimized by not underconstraining parameters (i.e., do not make the uncertainties of the apriori values of the parameters too large). As discussed in Herring et al. [1990] and Dong et al. [1998], when a priori constraints are applied, the critical quantity is the ratio of the a posteriori to a priori variances of a parameter estimate. The error in adjustment to a parameter value due to the constraint is given approximately by the adjustment times this variance ratio if the correlations among
the parameters are small. Thus, if station position is determined to 0.01 m and the a
priori constraint was 10 m, then the error in the adjustment due to the constraint is
approximately $10^{-6}$ times the adjustment. Thus even a kilometer error in the apriori
position will only bias the estimate by 1 mm in this case. In practice, the sensitivity is
somewhat larger due to correlations, but is probably bounded at $n$ times larger, where $n$ is
the number of parameters estimated. The easiest way to assess the effects is just to apply
different constraints and see what happens. Files containing a priori values can also be
updated if the adjustments are large.

**glorg error messages**

Error messages are usually associated with not finding files. If a `VREAD -1` (premature
end-of-file found) error occurs it usually means that either globk did not complete
successfully or that the file containing the solution has been overwritten by another
solution.

Like `globk`, the `glorg` command interpreter will issue a generic warning whenever it does
not understand a command, and again this can occur because of a misspelling, missing
station, or too few tokens. The most situation is a command file with equates or renames
for stations that are not present in the current data set. This situation will be noted by the
message

```text
** Error decoding parameter token MONP . Either non-existent station or paramet
** Error decoding parameter token NPOS . Either non-existent station or paramet
```
4. GMT Plotting Utilities

Among the shell-scripts of /com are a suite that make use of the public domain GMT plotting package to create various plots from GAMIT and GLOBK output files. The most important of these are `sh_plotcrd`, which generate time series from `glred` output, and `sh_plotvel`, which creates a velocity map from a `globk` or `glorg` output. Use of these two scripts is documented briefly in Section 3.4 and more extensively here. These scripts also have online help built into them; by typing the script name you will receive information on what the script does, the input files required and the options that may be selected.

**sh_plotcrd**

This script is new with release 10.0 and combines the functions previously performed by `ensum` (see Section 5.2), `sh_histogram`, `multibase`, and `sh_baseline`, all of which it calls.

**Basic usage:**

```
sh_plotcrd -f <files>
```

**<files>** : One or more `Glred/globk/glorg` print files containing repeated coordinate estimates

**Additional options:**

- `-s[pan]` (short/long) : Short will set a scale in days and remove only a mean from the time series; long will use years and remove a velocity (but see `-o` below to override) [default: short]

- `-o[rder]` (0 / 1) : Overrides `-span` for order of polynomial to fit to data

- `-v[ert]` : Overrides `-o` and `-s`, forcing no rate estimate for the vertical component

- `-r[es]` : Plot timeseries as residuals [default: no]

- `-e[xpt]` name : Experiment name used for naming files and labeling plots; if omitted, the plot files will have generic names related to the program that created them.

- `-k[ill]` sites : One or more sites to remove from plotting.

- `-b[ase]` name : Name of file containing sites to be used; format is a single column, with the 4- or 8-character site name beginning in column 2 [Default: all].

- `-u[cale]` value : Scale uncertainties by this value

- `-c[ols]` (1 or 2) : Number of stations per page [default: 2]

**Example:**

```
sh_plotcrd -f *.org -res -expt emed98
```
\textit{Sh\_plotcrd} goes through three steps to get the time series. First, it invokes program \textit{ensum} to extract the east, north, and up values from the \textit{globk}, \textit{glred}, or \textit{glorg} print file, and stores these in a "values" file (named \texttt{VAL.[expt]}). Second, it invokes program \textit{multibase} to reformat the values into separate files (\texttt{mb.[station].dat?}) for each component of each station. These files are then read by \textit{sh\_baseline}, which invokes GMT routines to create a postscript file for each station (or two stations if you've requested double columns to save paper). After the first step, \textit{sh\_plotcrd} calls \textit{sh\_histogram} to produce histograms of the weighted and normalized rms scatters (\texttt{pshist\_wrms.*} and \texttt{pshist\_nrms.*}), using a "summary" file (\texttt{SUM.*}) created by \textit{ensum}. If you wish to have more control over the plotting options and/or the naming of files, you can run \textit{ensum, sh\_histogram, multibase,} and \textit{sh\_baseline} separately, as described below. If you wish to plot baselines rather than station coordinates, you will need to run \textit{sh\_globk\_scatter}, followed by \textit{multibase} and \textit{sh\_baseline}, as described below.

\textit{sh\_globk\_scatter}

\textit{Sh\_globk\_scatter} invokes program \textit{bcsum} to extract baseline components from the \textit{globk}, \textit{glred}, or \textit{glorg} print files. To use obtain these components, you must have set the \texttt{BLEN} print option in your solution, which will generate very large print files if there are many stations in your network. For large networks, a better approach is to plot station coordinates (\textit{sh\_plotcrd}), obtaining repeatabilities of relative position by using \textit{glorg} with a regional stabilization or \textit{glred} (or \textit{globk}) either with a tight constraint on one station or moderate constraints on many stations (see Chapter 3). \textit{Sh\_globk\_scatter} (\textit{bcsum}) will create values files (named with lowercase, \texttt{val.*}) and summary (\texttt{sum.*}) files analagous to the \texttt{VAL.*} and \texttt{SUM.*} files of \textit{sh\_plotcrd} (\textit{ensum}), which can then be input to \textit{multibase} to create \texttt{mb.*} files for plotting. \textit{Sh\_globk\_scatter} also invokes GMT directly to generate a plot of baseline scatter versus length for the weighted (*\texttt{.ps1}) and normalized (*\texttt{.ps2}) rms values in the \texttt{sum.*} file.

Basic usage:

\begin{verbatim}
sh\_globk\_scatter -f <file>
\end{verbatim}

\texttt{-f[file]} : One or more \textit{Glred/globk/glorg} print files containing repeated coordinate estimates Input GLRED prt or GLOBK bak file

Additional options:

\begin{verbatim}
-sh\_globk\_scatter -f <file>
\end{verbatim}

\begin{verbatim}
-sh\_globk\_scatter -f [file] : One or more \textit{Glred/globk/glorg} print files containing repeated coordinate estimates Input GLRED prt or GLOBK bak file
\end{verbatim}

Additional options:

\begin{verbatim}
-[-l]ength maxlen : Maximum baseline to plot (defines horizontal scale); (default 1400 km)
\end{verbatim}

\begin{verbatim}
-[-n[umber] n : Minimum number of sites required for computation (default 2)
\end{verbatim}

See the script (or type \texttt{sh\_globk\_scatter -help}) for additional features which can be used to customize your plots.
**multibase**

Multibase reads the "values" file created by ensum or bcsum (called by *sh_globk_scatter*) and creates separate (mb.*) files for each component of each station so that *sh_baseline* can direct them easily to the GMT plotting scripts. To avoid creating plots for stations you don't want to see (though this is dangerous!) or to keep the number of baseline plots to a reasonable level, you can specify the stations you want using a list, specified in a "sites" file. The stations are simply listed, singly or in pairs (case-independent, with column one blank):

```
SITE1 | plot all combinations with SITE1
SITE2 SITE3 | plot SITE2-SITE3
SITE3 SITE6 | plot SITE3-SITE6
```

For example, if the sites file is named baselines, and you want to plot the output of *sh_baseline_scatter*:

```
multibase val.* -s baselines -d
```

where `-d` indicates that the time argument is days (`-y` selects years). The output files are named mb_[SITE].dat[n], where `n` is 1, 2, 3, 4 for north, east, up, and length, respectively.

**sh_baseline**

*Sh_baseline* reads the mb.* files created by multibase and calls GMT programs to create time-series plots.

**Basic usage:**

```
sh_baseline -f mb*
-f files : Files from multibase to be plotted; all begin with mb_
```

or

```
-F filename : where filename is a file containing a list of specific mb_ files
```

The following additional options are available for producing custom plots:

- `-erase`  :  Erase all psbase files in the directory (default is to overwrite only those that match the names of new ones)
- `-res`    :  Plot residuals to polynomial fit
- `-u`      :  Scale factor for uncertainties; default = 1.
- `-com file` : Creates length file from `bcsum` output com-file (component) and gets baseline lengths. If not issued, the value from `values-file` is passed to the plot.
- `-sol file` : Creates length file from `prt/glorg` file. Try to avoid `-sol` (takes long time) and use `-com`. If not issued, the value from `values-file` is passed to the plot.
-estimate file : Forward solution prtgorg file to obtain the estimated velocities. This provides a comparison between stochastic and deterministic solution. Activated when -com is issued. If -unc_scale issued, uncertainties of estimates will be scaled by this factor.

-u[nc_scale] # : Scale all uncertainties with this number. Default is 1.

-o[order] # : Polynomial to be fit to the estimates: 0 for mean, 1 for velocity, -1 to remove neither.

-vert : No velocity estimation for vertical component. Sets -o to 0.

-y[scale] min max : Vertical scale. If not issued it will be calculated.

-x[scale] min max : Horizontal scale. If not issued it will be calculated.

-xt[ype] : Turn on year (year.decimal day); default is day.

-n[row] : Rows per column. Default is 4 (N, E, U, L).

-cols value : Columns per page, 1 or 2 (default 2).

-frame value : GMT border frame ticks (default 2).

-anot value : GMT border label intervals (default 1).

-header : Turn off page and owner line. Good for thesis.

-ps extension : Extent for psbase GMT file name (is not necessary).

-c[omment] text : Comment entry. Anything other than - as first character of a word. Use _ instead. (\> for >)

-p[rinter] printer : If system PRINTER is defined something else.

Once sh_baseline has been run, the postscript files created (psbase.*) can be viewed on the screen using ghostscript or pageview, or sent to a laser printer.

sh_plotvel

Sh_plotvel is an extremely versatile script that can be used to create velocity maps from globk/glorg solutions, admitting most of the features available in GMT to create an instructive background map. In its simplest mode, the script allows GMT to determine the map dimensions based on the coordinates of the stations and creates a velocity map on a plain background, optionally including political borders for reference. To create a more elaborate background, you invoke the sh_plotvel with the name of another script that you have customized for your area of study.

Basic usage:

    sh_plotvel -f <file> -s <site> -ps <filename>

where <file> is the input globk/glorg print file or getrel output.
<site> is the 4-char station id of reference site for velocities (if omitted, plot absolute velocities); and

<filename> is the name given to the output postscript file.

The most important options for specifying the velocities are the following:

- **-maxsigma value**: Limits stations to those with sigmas less than this value
- **-u value**: Scale the uncertainties by this value
- **-i[interval] value**: Confidence interval for error ellipses (default 95%)
- **-factor value**: Scale the physical size of the velocity arrow by this value
- **-d site1 site2 ..**: Remove the sites listed (case insensitive)
- **-D file**: Remove the sites listed in the file (single column)

Other options, detailed in the script, allow you to site labels, page orientation, error ellipses, and arrow scale. shin_plotvel will also allow you to superimposed, in different colors, velocity fields from several solutions.

To underlay the velocity field with topographic or tectonic features, you can specify inclusion of one or more specific maps (\(-\text{map <map1>} \ <\text{map2>},\) or \(\text{-maplist <file>}\) or create for yourself a script that will generate all of the features you need:

- **-mapscript file**: Execute the shell script [file] to produce the map

Templates for this shell script can be found in /com as sh_map_calif, sh_map_china, sh_map_tien, and sh_map_turk. Within these scripts you prescribe the topography file, whether or not you want color or a gray-scale, and files for tectonic features and labels. Separately, for maximum flexibility, you can specify the range (lat/lon) for the map:

- **-maprange type**

which tells shin_plotvel to call script sh_map_elements with the keyword <type> to select a pre-set region (e.g. europe) There are 13 regions already defined, and you can as many of your own as you wish. You can also specify a region explicitly using the GMT range command in the calling sequence; e.g. \(-R130/170/40/80.\)

Finally, you can also add to your map specialized features such as an Euler pole and small-circle describing relative plate motion; and the epicenter, focal mechanism, and/or slip vector from an earthquake.

Examples:

sh_plotvel -f turkey.prt -s yigi -mapscript sh_map_turk
sh_plotvel -f tibet_001115b.org -ps 000115b -mapscript sh_map_chinatopo
    -maprange yunnan2 -maxsigma 10  -u 1 -factor 0.40 -page P -sitefont 8
    -arrow_value 20  -D remsite.yunnan
5. Auxiliary Programs

5.1 glist

Glist was designed originally to produce a list of stations included in all of the h-files in a .gdl list, allowing an easy assessment of the data distribution. It now has several new features, however, that make it an almost essential prerequisite to any new or large globk or glred run. In particular, it will check the coordinates on the h-file against those in the apr file, allowing you to catch conflicts and mistakes in station names. It can also be used to generate an output .gdl file in time-sorted order for use with glred. When executed via script sh_glist_gmt, the station time summary may be displayed in graphical form.

Runstring:

GLIST, Input list, <output_file> <sort_direction> <earthquake_file>

where Input list is the name of the file containing the list of global files to be included in the solution.

<Output_file> is the optional name of an output file (Default is user's terminal).

<sort_direction> optional value which determines in which order the data will be time sorted. The default is +1 meaning sort in ascending time order. -1 may be specified to have data sorted in descending time order.

<earthquake_file> is the name of a file containing earthquakes and other renames

[out gdl] Output GDL file sorted in time order according to sort_direction

[apr file] A globk apriori file to used in checking the apriori coordinates in the hfiles

Example of a glist output for the Transverse Ranges Experiments.

airy[93] glist t.gdl

GLIST: Summarize global solution contents

Starting to read input data list
Global 32
Time to sort epochs 0.00 second

Summary of SITE occurrences in t.gdl
Use of sites for 36 sites

<table>
<thead>
<tr>
<th>Site</th>
<th>Num</th>
<th>Start</th>
<th>End</th>
<th>Time</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>12</td>
<td>29</td>
<td>2</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>86</td>
<td>12</td>
<td>30</td>
<td>2</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>87</td>
<td>18</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>87</td>
<td>7</td>
<td>7</td>
<td>12</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>87</td>
<td>5</td>
<td>25</td>
<td>5</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>87</td>
<td>10</td>
<td>23</td>
<td>30</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>89</td>
<td>3</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>90</td>
<td>3</td>
<td>28</td>
<td>2</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

SUMMARY of occurrences
11. PVRO 27 1987.0-1990.2 3.23 12. BRSH 5 1987.0-1987.0 0.01
13. CULT 5 1987.0-1987.0 0.01 14. CHAF 1 1987.0-1987.0 0.00

Example of a glist output for the Transverse Ranges Experiments.
The error messages associated with \textit{glist} are usually file related. Warnings about the apriori values not matching will also be printed when this program is run.

5.2 \textit{glsave}

This program creates a combined binary h-file from the com\_file output of a \textit{globk} run. It provides an alternative to the \textit{out\_glb} command in \textit{globk}.

\texttt{glsave <com file> [out global name] [description]}

where <com file> is the \textit{globk} common file name (given in the \textit{com\_file} command).

[out global name] is an optional output file name.

[description] is an optional description for the solution. If there are blanks the description must be enclosed in single quotes (e.g., 'Week 819 run')

5.3 \textit{xysum, blsum, bcsum, ensum, enfit}

These five programs provide a convenient means for extracting coordinate and baseline information from the print files for \textit{globk} (usually produced by \textit{glred} runs) and from back solution output files. (See also \textit{extract} and \textit{exbrk} for more general extraction software, and \textit{multiplot} and \textit{plot} for display software). The program \textit{xysum} is a utility for getting or updating coordinate values for the .apr file and and the time-distribution of the stations; \textit{bcsum}, \textit{blsum}, and \textit{ensem} generate files for plotting; \textit{enfit} allows you to estimate functions describing post-seismic behavior and plot the residuals. Specifically:

\texttt{xysum} — extracts and averages the cartesian estimates of station coordinates and velocities, producing an apr file, a values file for plotting, and a summary file giving the time distribution of each station in the solution.

\texttt{blsum} — extracts baselines lengths only and produces a summary file with baselines, wrms scatters about the means, rates of changes and wrms scatters about the rates; and a values file which contains all baselines length determinations (sorted by baseline). This latter file may be used in \textit{multiplot} to produce plots of the time evolutions of all baseline lengths.

\texttt{bcsum} — extracts baselines and the north, east and up components of the baselines and produces a summary file, similar to \texttt{blsum}, for each baseline with four entries per baselines, one each for baseline length, north component, east component, and up component; and values file which contains the time evolution of baseline lengths and the baseline components. This file may be used as input to \textit{multiplot}.

\texttt{ensum} — extracts the North, East and Up components of station positions and produces a summary file and values file similar to \texttt{blsum}. The values file can be input to \textit{multiplot} and all components will be plotted.
enfit—extracts the North, East, and Up component of station positions and performs a fit to the time series for each station, allowing estimation of an offset, rate, and one or more exponential and periodic functions. This program is useful for error analysis and also for studying post-seismic relaxation.

For these programs to be used, output options with bit 1 set (i.e., 2 decimal) must be used during the globk runs.

**NOTE:** The summary files and values files are overwritten by these programs if they already exist.

The runstrings for each of these programs is shown below from on-line help files.

**XYSUM:** Generate globk apriori, summary, and a file containing all site XYZ values sorted by site and possibly time.

Runstring:

```
xysum <options> <apriori_file> <summary_file> <values_file> <Input solution files>
```

where `<options>` There are two options that may be passed:

1. Controls the sorting and limits on the number of values needed for an output to be made. If option contains a numerical value, then this gives the minimum number of estimates need to produce an output. If this numerical value is negative then the baseline entries will be time sorted before being output to the values file.

   (The default value is 0 i.e. all entries are output to summary file)

   `<apriori_file>` is the name of a globk style apriori file.

   `<summary_file>` is the name of the summary file (one line per site and component)

   `<values_file>` is the name of file where all the individual site components are written sorted by site and component, and optionally by time.

   `<Input solution files>` is a list of input files. These may be generated by globk, glbak, solvk or may be previously obtained values files with the line:

   `VALUES_FILE` as the first line of the file.

**BLSUM:** Generate summary and a file containing all the baseline length values sorted by baseline and possibly time.

Runstring:

```
blsum <option> <summary_file> <values_file> <Input solution files.>
```

where `<option>` controls the sorting and limits on the number of values needed for an output to be made. If option contains a numerical value, then this gives the minimum number of estimates need to produce an output. If this numerical value is negative then the baseline entries will be time sorted before being output to the values file.

(The default value is 0 i.e. all entries are output to
<summary_file> is the name of the summary file (one line per baseline)
<values_file> is the name of file where all the individual baseline lengths are written, sorted by baseline and optionally by time.
<Input solution files> is a list of input files. These may be generated by globk, glbak, solvk or may be previously obtained values files with the line:
VALUES_FILE
as the first line of the file.

The help file for ensum is similar to that for blsum, and will not be given. Bcsum has an extra output file:

BCSUM: Generate summary and a file containing all the baseline length values sorted by baseline and possibly time.

Runstring:

% bcsum <option> <summary_file> <values_file> <component summary> \
<Input solution files.>

where <option>, <summary_file>, <values_file>, and <input solution files> are the same as for blsum, and

<component summary> is the file containing the summaries for length (L), North (N), East (E) and height (U).

ENFIT: Generate multiparameter fits to time series data generated with globk/glred or from values files produced by ensum.

Runstring:

enfit <option> <-f cmd_file> <summary_file> <values_file> <Input solution files>

where <option> has the same meaning as in ensum. A positive numeric value sets the minimum number of measurements needed for a time series to be included.

<-f cmd_file> specifies name of command file used to set the parameters to be estimated
<summary_file> is summary output file
<values_file> is list of input values, residuals and model values from parameter estimates
<Input solution files> are globk/glred output files or values files from ensum (name must start with va).

The cmd_file contains the commands for the parameter estimates.

Exponential function
---------------------
EXP <date> <tau> <apriori sigma> [tau sigma]
where <date> is yy mm dd hh min for start of exponential,
<tau> is the decay time in days
<apriori sigma> is apriori contraint to apply to estimate in mm.
This command may be issued multiple times to generate results for multiple decay times.

\[\tau \sigma\] is an optional apriori standard deviation for the time constant. If this argument is included, the time constant will be estimated in a iterative solution.

Periodic function
-----------------

PER \(<\text{Period}>\) \(<\text{apriori sigma}>\)
where \(<\text{Period}>\) is the period in days. The terms have zero time at 2000/01/01
\(<\text{apriori sigma}>\) is apriori constraint to apply to estimate in mm.

This command may be issued multiple times to generate results for multiple periodic terms.

Output at specific times
------------------------

OUT \(<\text{name}>\) \(<\text{times}>\)
where \(<\text{name}>\) is name of output file. If the form \(xx@\) is used then the @ is replaced by the corresponding characters from the summary file name.
\(<\text{times}>\) is a list of days after the epoch of first exponential function to output values. Values can be specified in form \(<\text{nn}>x<\text{dd}>\) where \(<\text{nn}>\) is a number of values to output and \(<\text{dd}>\) is a spacing in days, e.g., 10x100.0 would output values100,200,300...1000 days after the epoch of the first
5.4 extract, exbrk

Extract and exbrk are general utility programs for extracting information which have some type of repeating structure. They allow information to be obtained from multiple lines in the input and then output on a single line. The two programs are the same except that exbrk will output a status report if any key on your terminal is touched while it is running. In response to this status, you have the option of continuing if everything looks good or aborting the run so that the input control file to extract can be modified. Since extract/exbrk can extract a number of different types of information for each run, you also have the option of skipping to next class of information to be extracted. These features are very useful when new extract commands file are being developed. They quickly let you see if the commands are working OK, and which lines the program is having trouble finding. Because of this key press sensitivy, exbrk cannot be run in background (the program will immediately stop in state waiting for input from your terminal). Even when run in foreground, the feature also poses a problem if the program is executed under script control, since any key pressed at any time during the script execution will cause the status to be printed and the program to wait for response when exbrk is executed. For these reasons, it is recommended that exbrk be used to check the extract command files, and then when you want to use these commands in general processing that extract be used.

EXTRACT : Program to extract information from ASCII files

Runstring:

CI> EXTRACT <command file> [input file] [output file]

where <command file> is the name of a file or LU with commands for extract. (See below)
[Input file] is an optional name of a file to be decoded. If not given the runstring then name should be given in the command file (see INPUT command)
[Output file] is an optional name for the output file. If not given here or in the command file (See OUTPUT command) then LU 1 will be the output device.

EXTRACT Commands
----------------
(Note: all commands may be truncated to minimum unique length, and all commands must be preceded by at least one blank)

END -- Tells program to stop reading the command file (EOF has the same effect)

INPUT -- Name of the input file. Must be given here or in the runstring.
Usage:  INPUT my_input_file.txt

OUTPUT -- Name of the output file. Defaults to users terminal. Multiple input files may be read for output to the same output file by giving new INPUT commands between RUN commands (see below) without re-giving the OUTPUT command.

DESCRIPT-- Allows the specification of the header record describing each of the fields extracted. Note: the description is enclosed in double quotes (*).
Usage: DESCRIPT <field #> "<description>" or where field # is the number of the field to which the description applies. (See field command below)

TITLE -- Allows a title to be given to the output file. This line will appear as the first line in the output file.
Usage: TITLE "<title>" OR TITLE <nn> where <title> is the string to be output and must be enclosed in double quotes.
<n> is an alternative form and line N of the input file will be used as the title. NOTE: No field information will extract until after the <nn> line of the input
FIELD -- Tells the program about the information to be extracted from the data file. This is a complex command which gives the user a great deal of flexibility in the information extracted.

The format of the command is:

FIELD # "<descriptor>" #_args type [Format 0/1 "(format)" or Readline 0/1 <entries>

OR

FIELD # CLEAR.

where:

# is the field number. EXTRACT allows the user to specify upto to 10 fields of information to be extracted.

There three types of field (See type below also).

Character -- only one string per field (upto 64 characters long)

Integer*2 -- Upto 32 integer values per field

Real*8 -- Upto 8 real*8 number per field.

If these numbers of arguments are not large enough then you can extract the information using a number of fields.

<descriptor> is an Ascii string which tells EXTRACT the EXACT string which must be found in the input file for it to extract the field data from the rest of the string.

#_args is the number of arguments in the field to be extracted (see above for limits)

type is the type of field. Type may CH for character, I2 for integer*2, R8 for real*8. (see restrictions on number of arguments given above).

The next string may be either:

FORMAT to extract the field data using a FTN77 format statement OR

READLINE to extract the field data using free format reads

Independent of the use of Format or Readline, the next argument 0/1 tells EXTRACT whether to get the data from the line immediately following the <descriptor> (option 0), or from the start of the line (option 1).

When FORMAT is used the 0/1 is followed by the FTN77 format enclosed in double quotes (don't forget the parentheses around the format,

When READLINE is used the 0/1 is followed by #_args values which tell EXTRACT which values for the rest of the line should be used. For example, if your input line looked like:

string 120 baseline 200 10 20 0.110 -- Line 1 2 6 3 4 5 6 7 -- Item numbers

then Items 2 4 5 6 and 7 could be read with R8 or I2 (although item 7 would be zero in I2 format). Any of the items 1-7 could be extracted with a character field (although only one item per field.) (if you wanted a character field with the complete line above, then FORMAT would be the only choice.)

The other option for the field command is CLEAR which will clear the information about the field. Thus this field will no longer be searched for.

BEGIN -- Allows the specification of strings which must be found before a field will be searched for.

Usage: BEGIN # number "<string>"

where # is the field number to which the begin applies,

number is the number of the begin when more than one string must be found. Number is currently limited to two i.e. upto two different string can be specified before the field will be extracted.

<string> is the EXACT string to be found (enclosed in double quotes.

FINISH -- Allows the specification of a string which will cause EXTRACT to stop searching for a field and to reset the field as being no yet found.

Usage: FINISH # "<string>"

where # is the field number and
<string> is the EXTRACT string to be found, again enclosed in double quotes.
NOTE: Since extract will only output the field data when all fields have been found, the FINISH strings should all appear after all of the FIELD strings in the input file.

NORESET -- Allows the specifications of fields which should not have there found status set False after the field data has been output.
Usage: NORESET nn nn nn OR
NORESET CLEAR
where nn are a list of field numbers to not be reset, the CLEAR option will clear all previously set NORESET values.

OUTFORM -- Allows the user to specify the output format for each of the fields.
Usage: OUTFORM # "(format)"
where # is the field field number, and
(format) is the F77 format to be used. (Enclosed in double quotes.) NOTE: when strings are output trailing blanks will be deleted during the output.

RUN -- Tells extract to process the input file with the current field information. THIS COMMAND MUST BE GIVEN OR ELSE EXTRACT WILL DO NOTHING.

NOTES:
--------
EXTRACT defaults to field 1 searching for EXPERIMENT DATE: with the date read with a format. This is used for extracting information from the SOLVK and GLBAK solution files. This field is also set for NORESET so that the same experiment date can be used for many items from a SOLVK solution.

EXTRACT will respond to a break issued from a system prompt, by summarizing its progress so far i.e., number of lines read and written, and current status of fields and begins being found. (NOTE: usually a field will appear as not found, since it is reset after each output).
The user then has the option of Aborting (stopping EXTRACT immediately), of stopping the processing of the current run, or continuing with the current processing.

EXAMPLE: The following extract command file will extract the statistics . from a SOLVK solution file. NOTE: Any character in column one will . cause the line to be treated as a comment
. Line below is a comment but could be used to get pre-fit statistics
. instead of postfit. If we wanted to we could do both together.
.field 2 "pre-fit Chi**2/f is" 1 CH readline 0 1
Note we are extracting two things from the same line.
.field 2 "All baselines" 1 CH format 0 "(7x,a20)"
.field 3 "All baselines" 1 CH format 0 "(34x,a20)"

This will get total number of data (see SOLVK output)
.field 4 "Pron" 1 R8 readline 0 1
.field 5 "DATA file" 1 CH Readline 0 1
.outform 2 "(a20)"
.outform 3 "(2x,a20)"
.outform 4 "(1x,15)"
.outform 5 "(2x,a12)"
.run ! NOTE COMMAND NEEDED

There are a number of other examples in the /SOLUTIONS/ directory
which contain extract command files. (All have .EXT extensions)

In response to pressing a key exbrk will respond as follows. (The text below shows the program run line as well.) In this example, the program was allowed to continue after the first break, and then aborted.
5.5 getrel

Getrel is a program which allows the relative velocities of stations to be extracted from a globk solution in such a way that they can be plotted using plot with error ellipses. To use getrel, velocities must be be estimated and glorg run with the output options brat:svel set. This output will produce the summary of station velocities and the velocities of the baseline components. Since the baseline components are output for the western directed baselines only, getrel will reverse the direction on the baseline to make the velocity components relative to station specified in the input runstring to to the program. The instructions for using getrel are given in the online help file. Any example of a plot control file to plot the output from getrel is also given below.

GETREL: Program to extract station specific relative velocities

This program will get the relative velocities of a group of stations and print the results in a format comparable to the standard NE velocity output from GLOBK.

Runstring is:
% getrel <site> <input file> <max_sigma>

where <site> is the name of the station the velocities are to be given relative to.
<input file> in the name of the file output from GLOUT or GLORG. Output options brat:svel should be set
<max_sigma> is the size of the maximum sigma to be output. (Default is to output all)

5.6 swaph, hfupd, htoh

These three programs alter existing h-files to achieve binary byte-order compatibility or to change incorrect information. The first program, swaph, is used to change from BIG-ENDIAN (HP, Sun) binary to little-endian (PC, DEC) binary:

swaph < h-files >
where <h-files> is the names of the files to be changed, with standard Unix wildcards allowed (i.e., swap h*). The program will sense the type of machine you are on and change the bytes only if necessary to be compatible with that machine's architecture. The files are rewritten in place, and the version number of the h-file, stored internally, is changed to indicate the te bytes have been swapped.

Program hfupd compares the entries on an h-file with those on a current GAMIT station.info file or a SINEX file and changes all that do not agree. Because of the high cost in storage and cpu to read and write a large number of h-files, hfupd is designed to make the changes in place (taking advantage of a direct-access read/write), overwriting the old h-file. Since the results of hfupd are non easily reversible, you can/should run it initially without the -u (update) option to be sure that you know what changes will be made.

hfupd <options> <list of hfile names>

Options:
-s <sinex file/station.info>
Use the named sinex file or station.info file to check antenna type and eccentricities. The program reads the complete station.info file so expect the program to stop for any errors in station.info. (A Gamit standard routine is used which generates a fatal error, so you will need to find the problems one-at-a-time). When station.info is used, antmod.dat and rcvant.dat must be available, either in the local directory or $HOME/gs/tables.
-e <edit file>
Edit the site/satellites based on list contained in <edit file>. This option is the equivalent to use_site --<name> is globk. Sites may be restored later provided the a new hfile has not been generated with the edited h-file. The renames are applied before checking the headers. So when station.info is used, sites can be renames to end in _GPS which are the only ones checked when station.infois used.
-r Report the contents of the sinex/station.info file given with the -s option
-u Update the hfile. This option must be given for the hfile to be updated. The hfile is re-written in place so the changes are permanent.
-d Report only the differences between the hfile and sinex/station.info file headers.
-p <hf/pmu file>
Apply the pole-tide correction. The file will be marked as having the pole tide applied and so it will not be reapplied in globk. If -p hf used then the hfile values for pole position will used. The recommended form is -p <pmu file name> which will used pmu file values for pole positions.
-h [list:]
Update headers only and not the solution vector. The [list:] includes a : separated list of quantities to be updated.

ant  -- Antenna information
ptd  -- Mark file as having pole tide applied without actually applying the pole tide. These features are useful for correcting inconsistent information, especially from sinex files (rather than ascii hfiles which contain information consistent with the solution). With the pole tide, the sinex file has no information to indicate that it has been applied. Analysis center reports must be relied upon for this information.

EDIT FILE options:

The following entries may be included in the edit file. All entries start with at least one blank character. All options are optional except the site name (and rename site for rename command).

EDIT     <NAME> <HF code> <Epoch range>
RESTORE  <NAME> <HF code> <Epoch range>
RENAME   <OLD NAME> <NEW NAME> <HF code> <Epoch range>

where <NAME> is the full name of the site
<HF code> is a character string that must appear in the hfile name
(16 characters max, optional, must not be all numeric)
<Epoch range> specified as start yr, mth, day, hr, min and end yr, mth, day, hr, min
<OLD NAME> is the old name of a site
<NEW NAME> is the new name of a site

The edit file does not allow positions to be changed directly. Such changes should be made through the appropriate sinex header antenna information.

Program htot changes the names of the stations in a GAMIT ASCII h-file. This program is used to allow the station codes to be changed to those used in a particular local analysis. Htoh is rarely used now that the rename command is available in globk.

HTOH: Change station names in hfiles

This program will read an h-file and change the names of the stations listed in the key file to the new name given there. The history entries will be appended below the GAMIT Datum line in the file.

The runstring for the program is
$ htoh <key file> <list of hfiles ....>

where <key file> is the list of stations names to change with optional comment lines in the file.
(The comment lines denoted by a non-blank character in column 1 are ignored.)
The format of the key file is:
OLDN  NEWN
with OLDN the old name of the station and
NEWN the new name. The Names must 4 characters long and spacing is not critical except column 1 must be blank.
and <list of hfiles ....> is a list of hfiles to change.
The new h-files are written out with the
same name as the old ones. The old hfiles
be deleted as each new hfile is sucessfully
written. While the new files are being
generated the original hfile is named
<name>.org. Any pre-existing .org file will
be overwritten. The list of hfiles can use UNIX wild
cards.

5.7 glbtog

This program will read a globk print file or bak file and generate a series of g-files that
can be used in GAMIT processing.

glbtog: Make g-files from GLOBK/GLBAK output

PROGRAM GLBTOG: make G-files from Globk output

This program will read either globk output files or
glbak output files and generate GAMIT G-files for all
the epheremis elements that it finds.

The runstring is:

% glbtog <globk/glbak file> [4-5 character code] ['Comment line']

where <globk/glbak file> is the name of the globk output or
glbak file and

[4-5 character code] is an optional 4 or 5 character code
to be used in the G-file name. If four characters are given
the fifth will be the last digit of the year. If no name is
given then 'glbkY' will be used where Y is the last digit
of the year.

['Comment line'] is an optional comment line. If the comment
includes blanks then it must be enclosed in single quotes (')

** WARNINGS **
+ This program will overwrite existing gfiles with the same name as
  those generated by the program
+ If multiple G-files will be produced then an end numerical value
  will be added to the name.
+ Since GLOBK/GLBAK only output orbital elements for those SV's with
data, the gfile produced here may need to be edited to add those
satellites in the xfile headers for which there is no data.
+ Be careful with multiday, stochastic orbits. When these g-files
are used again in GAMIT and globk used to processes the output
files, globk will not know that the orbits are not fully dynamic.
+ This program produces warnings if the radiation parameters deviations
are greater than 30%. It is not recommended for these orbits to be
re-integrated.
+ In addition to the IC values, the sigmas from the Globk solution are
also added to the file. The units of the sigmas are the same as
glbk units (meters, mm/sec and unitless). The sigma units are
different to the orbital element units.

The runstring is:

% glbtog <globk/glbak file> [4-5 character code] ['Comment line']
5.8 glbtosnx

This program will read globk ver 1.0 and greater binary h-files and write out IGS standard Solution INdependent EXchange (SINEX) files. The runstring is:

```
glbtosnx <dir> <comments file> <input binary hfile> <output file name>
```

where <dir> is the directory to write files to (use . for the current directory).
<comments files> is a file containing comments for SINEX file. If no name is given (i.e., ' ' is used) then a default name head.snx will be tried. If the file is not available no comments will be written to the sinex file. (The file will still be valid).
<input binary hfile> is the input binary file.
<output file name> is the output file name or root. If nothing is specified then the name will be 
<owner><gps week><gps day of week>.snx
if one character is given <gps day of week> is replaced with that character. In the full name: #### will be replaced by <gps week><gps day of week> and ### will be replaced by <gps week>.

The format of the comments file is similar to the SINEX itself. An example is given in head.snx in the $(HELP_DIR) directory. We have augmented the current SINEX format by entries to allow the DOMES numbers to be defined. These are also given in head.snx.
5.9 corcom, cvframe, velrot

There are three programs available to compare coordinates or velocities estimated in different reference frames. *Corcom* uses the cartesian coordinates and velocities in an apr file transforms them between pairs of frames related by an Euler vector. Transformations built into the program include those relating the ITRF or NUVEL-1A no-net-rotation frame to frames attached to each of the major plates, using the NUVEL-1A Euler poles and rates. *Cvframe* does the same thing but uses the velocity summary (vel file) in east, north, and up from a globk or glorg print file. *Velrot* reads a pair of vel files and estimates transformation parameters relating them. Hence it can be used to bring into a single reference frame velocity solutions from different analyses, even those provided by outside groups. In all three programs, it is possible to exclude or downweight height in performing the transformation.

CORCOM: Program for the comparison of station coordinates estimated by difference systems.

The runstring of the program is:

```
corcom <sys1> <frame1> <sys2> <frame2> <outname> <out_frame> <ties> <fundamental sites> <height wght> <scale>
```

where <sys 1> is the name of the file containing the stations
and their coordinates and velocity in system 1
<bram 1> is the frame for this first system. (See frames below.)
<bram 2> is the second (comparison) system. Sys 1 will be
rotated and translated into this frame. Differences
will be given between sys1 and sys2 in this frame.
<bram 2> is the frame for this second system. Same
choices as above. Default NAFD_1990.0 where the
end characters are the epoch of the frame to be
used. (Only used for the out_frame)
<bramname> is name of file for output of frame (overwritten)
<bramname> is the frame for the output field (as above)
<bram> if the file containing station ties. The file is
interpreted as using the second station name in the
tie to generate the position of the first tie. The
ties are only applied to the stations in sys 1. (May
be neglected in runstring---no ties will be used)
<brname> names of stations to be used for rotation
and translation (names after ties have been applied)
If not given then all stations are used. ALL may be
given as name and all common stations will be used.
A '-' in front of name will stop it being used.
<brname> Weight to be given to heights in the
transformation determination. If 1 then equal
weight given. If 0 then no weight is given
(default is not to used heights)
<brname> indicates that scale should be estimated (Y will
cause scale to be estimated, unless height weight
is zero, in which case scale can not be estimated.
is zero, in which case scale can not be estimated.

The following frame names are supported: PCFC, COCO, NAZC, CARB, SAFD,
ANTA, INDI, AUST, AfrC, ARAB, EURA, NAFD, JUAN, PHIL, NUV-NNR, AM-02,
ITRF93, ITRF94. E.g. NAFD_1993.4 for the output frame would North
America fixed with coordinates aligned at 1993.4. The rates are
calculated using NUVEL-1A unless a ":0" is added to the name (e.g. NAFD:0), in which case NUVEL-1 will be used.

CVFRAME:  Program to change velocity reference frame in .vel files

The runstring of the program is

```
cvframe <in vel> <out vel> <inframe> <outframe>
```

where <in vel> is the input velocity field file
<out vel> is the output velocity field generated by this program
ininframe> is the reference frame for the input field
<outframe> is the reference frame for the output field or an Euler pole vector passed as three values for wx, wy, wz (deg/Myr units). Values must be enclosed in ' '.

The Frame names follow the PLATE program convention.

VELROT: Program to combine velocity fields

Usage:

```
velrot <sys1> <frame1> <sys2> <frame2> <outname> <out_frame> \
<link file> <height weight> <param_opt>
```

where <sys1> Globk velocity file for System 1
<frame1> Reference frame for system 1. See corcom help for list of available frames.
<sys2> Globk velocity file for System 2. System 1 will be transformed into System 2 (reference system)
<frame2> Reference frame for System 2
<outname> Output file name containing the combined velocity field
<out_frame> Reference frame for output system
<link file> File containing options for sites to be used in linking the velocity fields. If the option is not given, all sites with the same name will be used.
<height weight> Weight to be given to the height velocity
<param_opt> Options for parameters to be estimated to transform the two fields. They are:
T - Translation
R - Rotation
S - Scale
L - Local 2-parameter transformation (should only be by itself)
The option is specified as single string.
The default is TR)

Only the first two arguments are required.

Program operation and output
-------------------------------

The two input systems are transformed to the output frame and, based on the options given in the link file, "common" stations are used to
transform System 1 to best match System 2. The options in the link file are (all lines start with at least one blank):

- **eq_dist** <distance (m)>
  Finds all sites separated by less than the distance given and uses these sites to align the frames. Sites can occur multiple times in these lists. Normally, this command is given first.

- **cp_dist** <distance (m)>
  For comparison/evaluation purposes, can be set so that all sites separated by less than this distance are marked in the output with an * at the end of the site name. If option is not used, eq_dist is used.

- **+-site_name** +--site_name
  Lines of this type allow specific sites to be included or excluded from the list of sites used in the alignment. Preceding a site name with a - will exclude it from the list, a + or no symbol will cause it be included. If only one site name appears, then the second site name is assumed to be the same. Nominally, the first name applies to system 1 sites, and the second name to system 2. The comparison of names is done with casefolded strings.

Example link_file:

* Set the nominal separation of sites to be 1 km.
  eq_dist 1000
* * Exclude list
  Any occurrence of g005_gps in the alignment sites from system 1 will be removed
  -g005_gps
  Any occurrence of c100_bas in System 1 alignment sites, and newp_gps in System 2 alignment sites are removed
  -c100_bas -newp_gps

* Include list
  If jplm_gps occurs in both systems include in the alignment
  sites (note: in this file this will result in the site being used twice)
  jplm_gps
  If e200_bas and egan_gps occur in both files, add to the alignment list. (+ at beginning of name is not needed)
  +e200_bas +egan_gps

**Height_weight** - The weight of the height velocities to be used in transforming between the systems can be specified with this argument. Default is height_weight = 1 (weight is applied to velocity covariance matrix based on the sigmas in the velocity files. Setting the weight to 0 will cause the height velocities not to be used at all in the alignment.

**Param_opt** - Options for the parameters to be estimated in transforming between the systems. If this argument is not given the default TR parameters are used. To have no parameters estimated, use a values other then TRSL, e.g., X.
Output
------
The output file first contains the statistics of the alignment of the systems and the residuals of the sites used in the alignment. These residual lines start with the letter A (for grepping). and contain the residual velocities at the alignment sites (dN, dE, dU), the combined sigma of the pairs of velocity estimates in the residuals (sN, sE, sU), and the contributions of the transformations uncertainties at these sites (sTN, sTE, sTU).

The second block of the output contains the velocities from System 1 given in the System 2 frame. The sigmas given here include the contribution from the uncertainty in the transformation parameters.

The final block gives the velocities of the sites in System 2. If a site name here matches exactly a name from System 1, the entry has a - symbol in the first column (thus is 4. made a comment).

In both outputs, sites in different systems which are separated by less than cp_dist will be marked with a * for System 1 and a '+' for System 2 at the end of the site name. To see which sites will be used for alignment, the following sequence can be used:
comb.list contains
cp_dist  10000
Then
% velrot sys1,vel nafd sys2.vel nuv-nnr sysout.vel pcfc comb.list
% grep '*$' sysout.vel >! t1.vel
% grep '+$' sysout.vel | awk '{print " "substr($0,2)}' >! t2.vel
% sh_plotvel -f t1.vel -line 0 -f2 t2.vel -line2 0 -color -sitefont 10
generates a plot with only the common sites on it.

NOTE: It may be necessary to remove the ' -' form the start of the System 2 lines if the site names match between the two files. We have done this above with the awk command.

5.10 plate

Program to generate a globk apriori station position file from an existing one with the velocities replaced by plate motion velocities. The input plate velocity file contains the rotational velocities of the poles for each station. If a station appears in the apriori file but not in the plate file, its entry is copied directly to the output file inchanged.

PROGRAM PLATE:

This program reads an apriori global apr file and a file containing site names and velocity vectors and outputs a new file with the velocities included. The velocity field is also output in a format used by sh_plotvel for plotting velocity fields.

NOTE: No attempt is made to correct the station positions for the new velocity. The positions are assumed to be given at epoch which makes them uncorrelated with velocity. (The Unc. values in the GLOBK output are of this nature.)

Runstring:
% plate <plate file> <Input .apr file> <output .apr file> \
   [velocity file] [Reference frame]
where <plate file> is a file containing site name and rotation vectors (wx,wy,wz= rads/Myrs) or the names of plate (see below)

* <Input .apr file> is a standard globk site apriori file
* <output .apr file> is the output file with new velocities in the format of standard globk site apriori file.
[velocity file] is an optional name of the velocity file. If not name is given, then the velocities are output to "<output .apr file>.vel"
[Reference frame] is the reference frame to use if plate names are given in the plate file (see list below). If :A is added to the reference frame name then Nuvel-1A plate velocities will be used (default is Nuvel-1) Default is NUV-NNR.

* Example of plate file (normally would be one line per station).
* Rotation vectors are NA fixed.
* [This form is no longer recommended].
*  wx         wy        wz
*           (rad/Myr)(rad/Myr) (rad/Myr)
MADRGPS -0.001296  0.001259  0.003457 Eurasia
KOURGPS -0.001355  0.002180 -0.000750 South America
WSFMGPS 0.000000  0.000000  0.000000 North America
KOKRGPS -0.001849  0.008826 -0.010267 Pacific
BAHRGPS 0.006721  0.003219  0.007229 Arabian
MCMUGPS -0.001499  0.002328  0.004014 Antarctic (from AM0-2)
PAMAGPS -0.001849  0.008826 -0.010267 Pacific
MASPGPS 0.000662  0.000523  0.004326 African

* Alternatively plate names may be used from the list below with the option of intermediate velocities between two plates:
  piel_gps nafd
  mojm_gps nafd 0.25 pcfc
* The latter form using NAFD velocity plus 25% of the difference between PCFC and NAFD. (nafd 1.0 pcfc is the same as pcfc)

The following frame names are supported:
PCFC, COCO, NAZC, CARB, SAFD, ANTA, INDI, AUST, AFRC, ARAB, EURA, NAFD, JUAN, PHIL, NUV-NNR, AM-02, ITRF93
Adding a :A to the name will scale the rate to the NUVEL_1A model.